Baseline Monitoring Document and As built Report

Draft

UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland
Restoration Project
SCO No. 04-06351-01A
DENR Contract No. D05053S-1
EEP Project No. 290
Brunswick County

Data Collection: March 1st through December 6th 2010 Submission Date: September 16, 2011

North Carolina

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

Baseline Monitoring Document and As built Report Draft

UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Project

SCO No. 04-06351-01A

DENR Contract No. D05053S-1

EEP Project No. 290

Brunswick County

North Carolina

Data Collection: March 1st through December 6th 2010

Submission Date: September 16, 2011

Prepared by:

Rummel, Klepper & Kahl, LLP 900 Ridgefield Drive Suite 350 Raleigh, NC 27609

2.0 Table of Contents

1.0 Title Page	i
2.0 Table of Contents	ii
3.0 Executive Summary/Project Abstract	1
4.0 Project Goals, Background and Attributes	
5.0 Success Criteria	4
6.0 Monitoring Plan Guidelines	5
7.0 Maintenance and Contingency Plans	6
8.0 As-Built Conditions (Baseline)	
9.0 References	

Appendix A. General Tables and Figures

Appendix B. Morphological Summary Data and Plots

Appendix C. Vegetation Data

Appendix D. As-Built Plan Sheets

3.0 Executive Summary/Project Abstract

The UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site is located in Boiling Spring Lakes, Brunswick County. The restoration project is located on a 516.73 acre tract purchased (fee simple) by the State of North Carolina (Ecosystem Enhancement Program) in December 2004. The UT Lilliput Stream and Wetland Restoration Site was previously owned by International Paper and used in rotation as a pine plantation. Pine plantations in southeastern North Carolina are typically characterized by major site alterations constructed to provide sufficient surface and groundwater drainage in wet conditions which allows planted pine trees to grow and cultivate. Site alterations also destroy ecological function, decrease water quality and disrupts habitat for wildlife, including federally threatened and endangered species.

The goal for the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site is to restore ecological function, improve overall water quality, and enhance native wildlife habitat. This goal will be accomplished by two main objectives. The first objective is restoration of channelized tributaries to the headwater outer coastal plain stream type, as described in the "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina" guidance document (COE 2005). The stream restoration will re-establish the riparian vegetation zone, re-connect flood plain areas, and enhance wildlife habitat. These ecological functions have been non-existent for decades due to the previous ditch and drainage regime. The second objective is to restore and enhance the altered wetlands. The restoration and enhancement of wetlands onsite will generate longer soil saturation periods and the result is improved water quality. Restoring the native hydrologic characteristics will also restore the conditions that are beneficial for the longleaf pine community type that previously dominated the site before human intervention. The longleaf pine forest will also restore native habitat for the red-cockaded woodpecker.

The UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site was previously a pine plantation. Pine plantations in southeastern North Carolina are typically characterized by major site alterations that were made to eliminate much of the wet conditions. When modified, these sites provide sufficient surface and groundwater drainage that allow planted loblolly pine (*Pinus taeda*) and longleaf pine (*Pinus palustris*) trees to grow be cultivated. Foresters typically perform two major site alterations in preparation for a pine plantation: channelization of natural stream channels and bedding. These site alterations were utilized extensively throughout the project site. Restoring these alterations back to natural condition were key in both project design and implementation.

Stream Restoration and Stream Preservation are both components of this project (Table 1). Stream restoration for UT Lilliput is divided into two tributaries. The North Tributary (1,535 linear feet) and South Tributary (1,703 linear feet) were constructed utilizing the guidance entitled "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina" (COE 2005). A total of 3,238 linear feet of stream restoration will be provided in accordance with the enclosed plans. Stream Preservation areas will consist of 5,332 linear feet. (See Table 1 for Project Components and Figure 2 for Component Location)

The wetland component of the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site consists of non-riparian wetland preservation, restoration, enhancement, and riparian preservation. The non-riparian wetland preservation areas total **87.74** acres and riparian wetland

1

preservation areas total **20.45 acres**. Non-riparian wetland enhancement totals **96.46 acres** and Non-riparian wetland restoration totals **7.83 acres** (See Table 1 for Project Components and Figure 2 for Component Location). Non-riparian wetland restoration was accomplished by removing spoil materials, re-grading to natural elevations, and replanting with native species. Wetland enhancement was accomplished on the eastern side of Boiling Springs Lake Road through the stream restoration process and planting. The stream restoration will enhance hydrology throughout the site and restore conditions that will enable the native plantings to flourish. Wetland enhancement on the west side of Boiling Springs Lake Road was accomplished by removing spoil material and re-grading to natural elevations to enhance hydrology to pre-altered conditions.

As-built conditions are congruent with design specifications and no major deviations have occurred. The stream restoration longitudinal profile and cross sections can be viewed in Appendix B. Baseline vegetation sampling yielded a site density of 709 stems per acre and species distribution was consistent with the planting plan specifications (Appendix C).

Monitoring for the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site will be conducted annually for a five (5) year period. Headwater stream monitoring will be comprised of an annual channel centerline profile survey and eight (8) cross sections will be surveyed each year utilizing total station survey technology. Vegetation data will be compiled annually utilizing EEP-CVS Protocol Level 1 methods consisting of fifteen (15) vegetation monitoring plots and one (1) total stem count. The site will also be inspected visually and documented with photography. Hydrology will be monitored through a series of thirty-eight (38) total monitoring gauges. Of these, Twenty-eight (28) gauges are installed to monitor groundwater, eight (8) gauges will monitor surface water in the restored headwater stream channels and one (1) surface and four (4) groundwater monitoring gauges will be utilized for the reference areas.

UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site by design is a restoration of the Longleaf pine (*Pinus palustris*) community type. This design includes maintenance strategies that utilize controlled burning. EEP is currently working with The Nature Conservancy and the North Carolina Department of Agriculture and Consumer Sciences Plant Conservation Program to determine a maintenance schedule for controlled burning. It is recommended that controlled burns occur every three (3) to five (5) years or as needed. With regards to current site conditions, it is recommended that the initial controlled burn occur during 2011 to optimize longleaf pine mortality rates.

4.0 Project Goals, Background, and Attributes

The UT UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site is located in Boiling Spring Lakes, Brunswick County in the lower Coastal Plain of North Carolina (Figure 1). The Soil Survey for Brunswick County (USDA 1982) reveals elevations generally vary from 75 feet to sea level. Total annual precipitation ranges from 50 to 60 inches per year in the eight-digit hydrologic unit 03030005 and fourteen-digit hydrologic unit 03030005070010 of the Cape Fear River Basin. Adjacent landuse consists of mostly forested sandhill vegetation with roughly 10% of the area in residential development.

The goal for the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site is to restore ecological function, improve overall water quality, and enhance native wildlife habitat. This goal will be accomplished by these main objectives.

- Restore lost ecological function
- Improve overall water quality
- Enhance and Improve native wildlife habitat and diversity
- Reduce erosion and sedimentation
- Restore the native longleaf pine community
- Restore headwater wetlands

The first objective is restoration of channelized tributaries to the headwater outer coastal plain stream type, as described in the "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina" guidance document (COE 2005). The stream restoration will re-establish the riparian vegetation zone, re-connect flood plain areas, and enhance wildlife habitat. With proper stream restoration design, the project will also reduce erosion and sedimentation. These ecological functions have been non-existent for decades due to the previous ditch and drainage regime. The restoration and enhancement of wetlands onsite will generate longer soil saturation periods and the result is improved water quality. Restoring the native hydrologic characteristics will also restore the conditions that are beneficial for the longleaf pine community type that previously dominated the site before human intervention. The longleaf pine forest will also restore native habitat for the red-cockaded woodpecker.

The first component of the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site is restoration of the headwater streams, as described in the "<u>Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina</u>" guidance by the USACE and DWQ (COE 2005). The second component is wetland restoration and enhancement. By accomplishing these two objectives, the site hydrology is restored to pre-altered conditions thereby improving water quality by increasing saturation periods, enhancing native wildlife habitat, and reestablishing lost ecological function.

Stream Restoration: The North Tributary (1,535 linear feet) and South Tributary (1,703 linear feet) were constructed utilizing the December 2005 USACE guidance "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina". The referenced document states that restoration of dimension, pattern and profile in accordance with the typical natural channel design is often not appropriate in environments similar to the project site. For headwater stream restoration, a width of 100 feet centered along the resulting valley will determine the area that can be considered for stream restoration (COE 2005). The resulting longitudinal profile and cross slopes of the stream valley will be largely dependent on the topography along each restoration reach. A total of 3,238 linear feet of stream restoration has been accomplished.

<u>Non-riparian</u> wetland restoration (7.83 acres): The previous logging activities created large logging decks (discarded materials from the logging operation) which are areas that the harvested loblolly pine logs were de-limbed, cut, sorted, and loaded on trucks. The discarded material accumulated at three different areas across the site with depths reaching up to approximately eight feet in thickness. Non-riparian wetland restoration was accomplished by removing these logging decks, grading to pre-existing

elevation, and planting native species (Site1, Site 2, and Site 3). Site 6 contained fill that originated from erosion created by a maintained power line right of way and an adjacent access road. This fill material was removed and replanted with native species (Figure 2). The south headwater and north headwater wetland restoration areas (Figure 2) were accomplished by filling the existing drainage ditched and regrading to pre-existing elevations and planted with native species.

Non-riparian wetland enhancement (**96.46 acres**): Vegetative enhancement was provided by planting with native species and the hydrology was enhanced through the stream restoration process in the wetland enhancement areas west of SR 1539 (Figure 2). The restored stream raised the existing water table and generated longer saturation periods. Non-riparian enhancement areas Site 4, Site 5, and Site 7 are wetlands that have been ditched and drained. Enhancement on these areas was a result of plugging the existing ditches and enhancing hydrology (Figure 2).

In addition to the restored and enhanced areas described above. UT Lilliput Stream and Wetland Restoration Site also provided **5,332 linear feet** of stream preservation and **20.45 acres** or riparian wetland preservation (Figure 2). Guidance from the North Carolina Department of Water Quality (DWQ) was used for stream delineations and guidance from the US Army Corps of Engineers (COE) 1987 Manual was used in delineating wetlands. These jurisdictional features were GPS located with sub-meter GPS technology and cataloged for preservation credit. All jurisdictional features were reviewed and approved by agency representatives after field review.

5.0 Success Criteria

Stream Restoration for UT Lilliput utilized "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina" guidance document (COE 2005), for both design and design implementation. Therefore, traditional stream success criteria accepted for natural channel design cannot be used for this project. Headwater stream restoration will employ a monitoring plan that is more consistent with that of a wetland monitoring strategy since there will not be a constructed channel with pattern, dimension, and profile. The constructed headwater stream areas will be monitored with annual surveys, photos, vegetation monitoring, and groundwater/surface water monitoring gauges.

To monitor the restored groundwater, Remote Data Systems (RDS) WM20 and WM40 groundwater monitoring gauges will be paired with a surface water monitoring gauge (RDS WM40), and placed every 500 feet in restored valley length. Likewise, one pair of gauges will be placed on every restored reach that does not measure a total of 500 feet in length. The data from these gauges will be compared to the reference site gauges.

Cross-section surveys will also occur. Although typical stream monitoring techniques will not be applied, these surveys will be used as a year-to-year comparison to as-built conditions. Migration of flow paths across cross section plots are expected from year to year. To be considered successful the overall cross section geometry should remain consistent without significant sediment aggradation or degradation.

Photographic documentation and visual monitoring will also be utilized to note success or problem areas throughout the monitoring period. Visual inspections along each of the stream valleys is intended to confirm the presence of a braided, diffuse flow pattern, plant success, and performance of the woody structures. Problem areas will be documented in the annual monitoring reports and consultation with EEP will be carried out to reach a resolution.

Success criteria are based on overall performance of the designed headwater stream restoration so that no substantial aggradation, degradation, down-cutting, or erosion occurs in longitudinal profiles and cross sections. The hydrologic regime should demonstrate jurisdictional wetland hydrology for groundwater monitoring gauges within the constructed channel as recommended in the "Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina" guidance document (COE 2005). Surface gauges should demonstrate periods of intermittent surface flow and relevance to the reference conditions to be deemed successful.

Wetland monitoring gauges (RDS WM20 or WM40) will be used to monitor the groundwater levels in wetland restoration and enhancement areas. On-site reference gauge data can be used as a basis of comparison. Post construction monitoring gauge locations are shown in Figure 2.

Hydrologic success criteria for restored wetlands are based on specific site conditions to determine wetland hydroperiods. To meet the success criteria for hydrology, the area must be inundated or saturated (within 12 inches of the surface) by surface or groundwater for at least a consecutive 12% of the growing season. Areas inundated or saturated less than 12% can be classified as wetlands depending upon factors such as the presence of hydrophytic vegetation and hydric soils. The growing season start and end dates are based on the U.S. Army Corps of Engineers 1987 Wetland Delineation Manual criterion of five (5) years in ten (10) frequency having a twenty-eight (28) degrees Fahrenheit or lower temperature threshold. Therefore, UT Lilliput Stream and Wetland Restoration Site growing season will be defined as March 7th through November 28th. Hydroperiods should also demonstrate similar conditions to the reference monitoring gauges. Additional reference groundwater monitoring gauges were installed in July 2011 in both Murville and Leon soil types. The restored and enhanced non-riparian wetlands onsite are located on these soil types and additional reference data from these soils will aid in determining wetland restoration and enhancement success.

Wetland enhancement areas are monitored for hydrology as well. Although there is no standard protocol for success criteria in hydrologic wetland enhancement, the monitoring effort will demonstrate an improvement in hydroperiods over time and this improvement should be documented as it occurs. Improvements in hydroperiod can be determined by referencing current gauge location and data with preconstruction gauge location and data. The pre-construction gauge locations were determined to ascertain the effect of the ditching on the groundwater levels and effect on the surrounding wetland communities. In some areas, the post-construction gauges were installed on or near pre-construction locations. Groundwater monitoring gauge transects were also installed (December 2010 after MY1) perpendicular to the headwater stream channel to document improved groundwater hydroperiods.

Based upon CVS-EEP protocol for establishing vegetation monitoring plots, the UT to Lilliput Creek (Hog Branch Ponds) Stream and Wetland Restoration Site utilizes 15 vegetation monitoring plots throughout all zones. Because of its small size (0.043 acre) Site 6 will have a total stem count. CVS-EEP Level 1 monitoring protocol and Level 2 for MY2 through MY5. The vegetative restoration occurs in four (4) planting zones: Zone I - Coastal Plain Small Stream Swamp, Zone II – Wet Pine Flatwoods, Zone III – Pine Savanna, and Zone IV – Cypress Gum Swamp. See appendix D for planting plan.

Success Criteria state that there must be a minimum of 320 trees per acre surviving for three consecutive years. The required survival criterion will decrease by 10% per year after the third year of vegetation monitoring (i.e. 288 trees/acre for year 4, and 260 trees/acre for year 5). To meet success there should be at least 260 5 year-old trees per acre after year 5.

6.0 Monitoring Plan Guidelines

<u>Hydrology</u> – Hydrologic monitoring will be accomplished through a series of forty (40) monitoring gauges. Twenty-eight (28) monitoring gauges are installed to monitor groundwater, and eight (8) gauges will monitor surface water in the restored headwater stream channels. The reference site utilizes one (1) surface water monitoring gauge and three (3) groundwater monitoring gauges. Data will be collected monthly through the growing season March through November (Figure 2).

<u>Dimension</u> – Channel dimension will be surveyed once each year at 8 permanently established cross-sections; four (4) along the Northern Tributary and four (4) along the Southern tributary. Cross sections will be surveyed using total station methodology and the data will be analyzed and plotted using CADD and Microsoft Excel software packages (Figure 2).

<u>Profile</u> – Channel profile will be surveyed once each year using total station methodology to survey centerline and water surface elevations for both the Northern and Southern tributaries (thalwag survey is not applicable due to the braided nature of headwater stream type). Each profile survey must be taken down the centerline of each channel with start and stop points the same. All data will be analyzed and plotted using CADD and Microsoft Excel software packages (Figure 2).

<u>Pattern</u> - Channel pattern data will be collected as part of the channel profile survey.

<u>Sediment Transport</u> – Visual inspection and survey data will be used to confirm no significant aggradation or degradation of the constructed channels.

<u>Visual Assessment</u> – Visual assessment of the stream features will occur during the stream profile survey. Visual assessment will photographically document any feature that needs immediate attention by EEP (Figure 2).

<u>Bank Stability Assessments</u> – Headwater stream restoration does not incorporated typical channel and bank features normally associated with natural channel design. Therefore, BEHI and NBS are not applicable to this project.

<u>Vegetation</u> – Vegetation sampling will follow the 2008 CVS-EEP Protocol for Level 1 (Version 4.2). Fifteen (15) 100m² plots have been established and will be sampled every year to determine if vegetation survival is above or below the criteria that the U.S. Army Corps of Engineers require for a successful project. CVS-EEP Microsoft Access software package will be used for vegetation data analysis and reporting to EEP and CVS. Site 6 will require a total stem count (Figure 2).

<u>Digital Photos</u> – Digital photo documentation of each permanent cross section, each vegetation plot, each designated photo point, and representative stream photos shall occur annually. One representative photo

of each vegetation plot must be taken on the same day vegetative assessments are conducted. All photos should be taken during the same general time frame each year. Figure 2.

<u>Other Parameters</u> – There are currently one (1) surface water monitoring gauge and four (4) groundwater monitoring gauge located in reference areas. These gauges will require monthly data download throughout the growing season (March 7 through November 28).

7.0 Maintenance and Contingency Plans

EEP is currently working with The Nature Conservancy and the North Carolina Department of Agriculture and Consumer Sciences Plant Conservation Program to determine a maintenance schedule for controlled burning. It is recommended that controlled burns occur every three (3) to (5) years or as needed. The current site conditions will require an initial burning by the end of year 2011. If any problem should arise that will require remedial action, this problem should be immediately reported to EEP with photographic documentation and should include a brief description.

8.0 As-Built Conditions (Baseline)

A comparison of as-built site conditions and design plans reveals no significant changes have occurred. Cross section survey shows that channel dimensions are congruent with design and the longitudinal profile is holding grade. Stream dimension, pattern, and profile, plots are found in Appendix B and Appendix D. Monitoring features and location are noted in Figure 2.

EEP protocol requires baseline vegetation baseline data to be collected within twenty one (21) days of the completion of site planting. This requirement was met and an accurate baseline sample of planted stems was taken within CVS/EEP parameters. Vegetation sampling yielded a site density of 709 stems per acre and distribution was consistent with the planting plan. Vegetation data including plot photos are found in Appendix C.

9.0 References

Harrelson, C.C., C.L. Rawlins and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Fort Collins, CO.

NCEEP. 2006. UT to Lilliput Stream and Wetland Restoration Project Restoration Plan. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 3, October 16, 2006.

NCEEP. 2010. Content, Format and Data Requirements for EEP Baseline Monioring Report. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 2.0 October 14, 2010.

NCEEP. 2008. CVS-EEP Vegetation Sampling Protocol. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 4.2, 2008.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

U.S. Army Corps. Of Engineers. 1987. U.S. Army Corps. of Engineers. Tech Report Y-87-1, 1987 Wetland Delineation Manual, Washington, DC. AD/A176.

U.S. Army Corps. Of Engineers. 2005. U.S. Army Corps. of Engineers. Information Regarding Stream Restoration in the Outer Coastal Plain of North Carolina, Wilmington Regulatory Field Office.

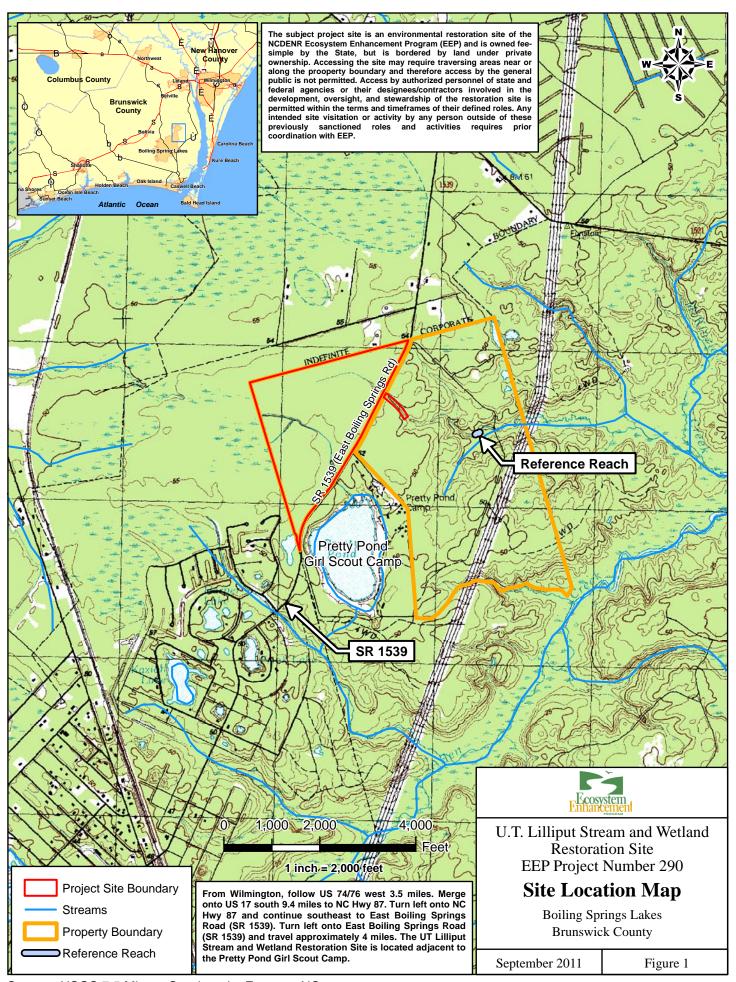
APPENDIX A

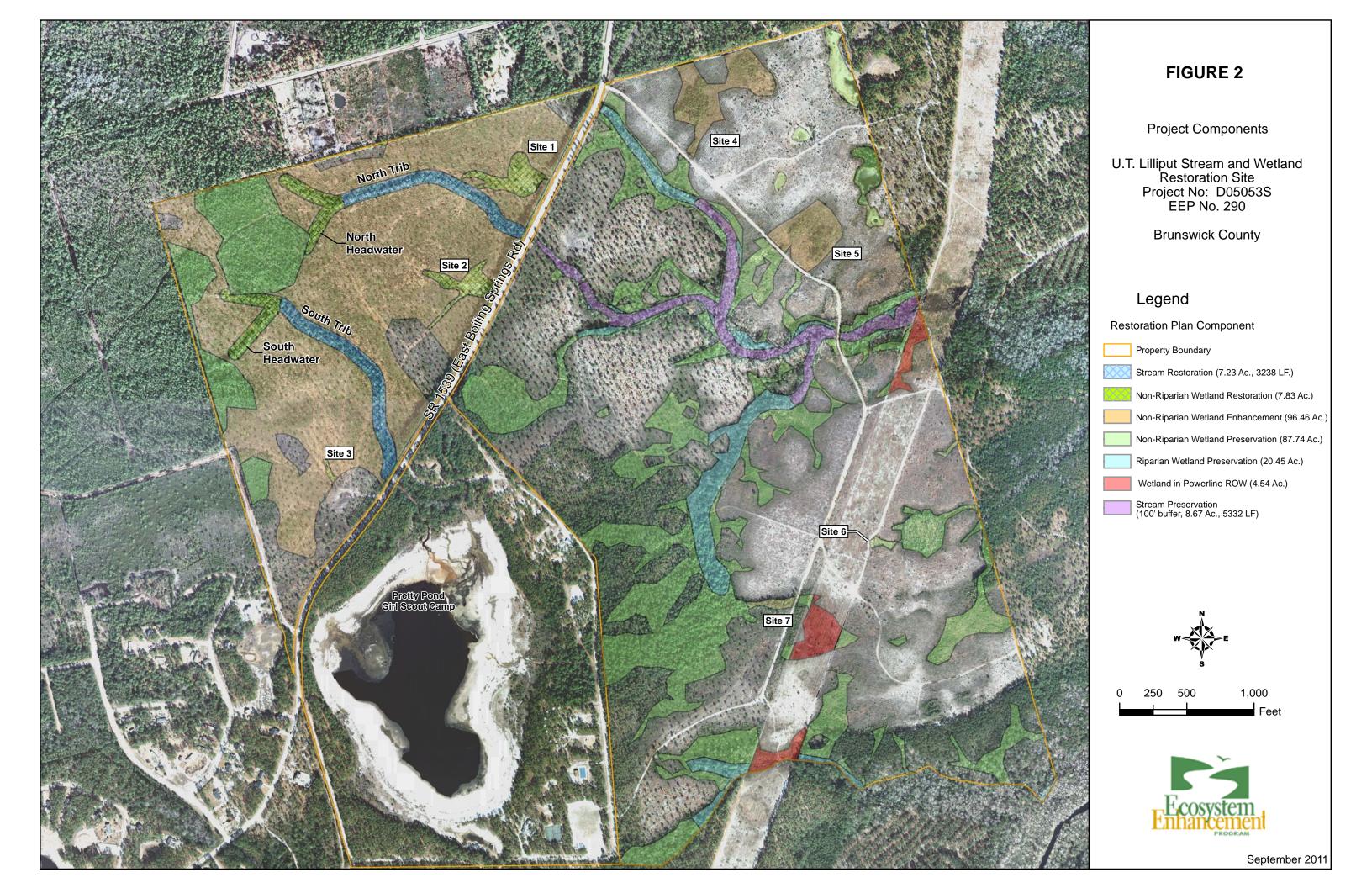
General Tables and Figures

APPENDIX B

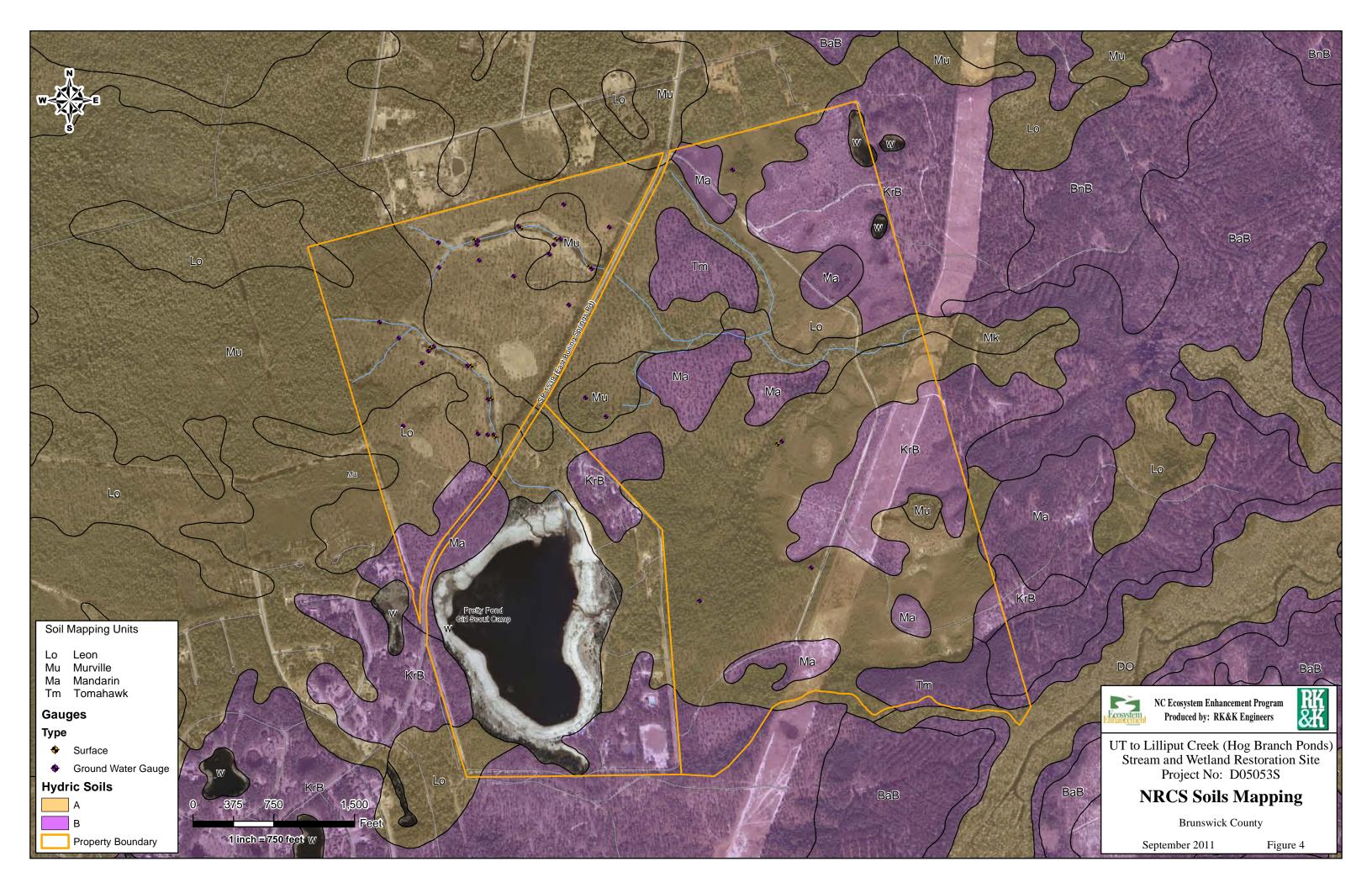
Morphological Summary Data, Plots, and Photos

APPENDIX C


Vegetation Data


APPENDIX D

As-Built Plan Sheets


APPENDIX A

General Tables and Figures

		purbuce	1111 a11	Mitiga			n i rojeci	, 12121	P No. 290	
	Str	eam		parian Tetland	Non-Riparian Wetland		Buffer		Nitrogen Nutrient Offset	Phosphorous Nutrient Offset
Туре	R	RE	R	RE	R	RE				
Totals	3,238	1,066.4		4.09 Project	7.83 Comp	65.72 onents				
				Ū	-					
Project Component	Stationing/Location		Existing Footage/Acreage		Approach		Restoratio Restorati Equivale	on	Restoration Footage or Acreage	Mitigation Ratio
0 to 1 st Order Stream Restoration		Northern Tributary		Str		water Restoration eam ration		ion	1,535 LF	1:1
0 to 1 st Order Stream Restoration		thern utary	1,7	1,703 LF Head Stre		lwater eam oration	Restoration		1,703 LF	1:1
Stream Preservation	See F	igure 2	5,3	332 LF		rvation	Preservation (RE)		5,332 LF	5:1
Non-riparian Wetland Restoration	See F	igure 2	7.8	3 acres	Resto	oration	Restorat	ion	7.83 acres	1:1
Non-riparian Wetland Enhancement	See F	igure 2	96.46 acres		Enhan	cement	Enhancement (RE)		96.46 acres	2:1
Non-riparian Wetland Preservation	See F	igure 2	87.74 acres		Prese	rvation	Preservat (RE)	tion	87.74 acres	5:1
Riparian Wetland Preservation	See F	igure 2	20.45 acres		Prese	rvation	Preservat (RE)	tion	20.45 acres	5:1
			(Compone	nt Sur	nmatio	n			
Restoration Level	Stream	n (Linear Fe		Riparian We	tland	Non-rip Wetland		Buffe (acres		Upland (acres)
				()		, , chuile	(45165)	(acros	-,	(30203)
Restoration 3,238 LF					7.83 acres					
Enhancment						96.46 acres				
Enhancement I										
Enhancement II										
Creation										
Preservation 5,332 LF		20.45 acres		S	87.74 acres					
High Quality Preservation										
				BMP	Eleme	ents*				
Element Loca		tion	on		Purpose/Function		Notes			

^{*}BMP Elements are not part of the UT Lilliput Project

Table 2. Project Activity and Reporting History UT Lilliput Stream and Wetland Restoration Project - EEP Project No. 290					
Activity or Report	Data Collection Complete	Actual Completion or Delivery			
Restoration Plan	NA	October 2006			
Final Design – Construction Plans	NA	April 2008			
Construction	NA	February 2010			
Temporary S&E mix applied to entire project area	NA	March 2009			
Permanent seed mix applied to entire project area	NA	March 2009			
Containerized and B&B plantings	NA	February 2010			
Baseline Monitoring Document (Year 0 Monitoring - baseline)	December 2010	December 2010			
Year 1 Monitoring	December 2010	January 2011			
Year 2 Monitoring					
Year 3 Monitoring					
Year 4 Monitoring					
Year 5 Monitoring					

Table 3. Project Contacts Table				
UT Lilliput Stream and Wetland Restoration Project - EEP Project No. 290				
Designer	RK&K Engineers			
	900 Ridgefield Drive			
	Suite 350			
	Raleigh, NC 27609			
Primary project design POC	Pete Stafford (919)-878-9560			
Construction Contractor	River Works Inc.			
	8000 Regency Parkway			
	Cary, NC 27518			
Construction contractor POC	Will Pedersen (919)-459-9001			
Planting Contractor	River Works Inc.			
	8000 Regency Parkway			
	Cary, NC 27518			
Planting Contractor POC	Will Pedersen (919)-459-9001			
Seeding Contractor	River Works Inc.			
	8000 Regency Parkway			
	Cary, NC 27518			
Seeding Contractor POC	Will Pedersen (919)-459-9001			
Seed Mix Sources	Contact River Works Inc.			
27 0 10 11				
Nursery Stock Suppliers	Contact River Works Inc.			
Monitoring Performers	Rummel, Klepper, and Kahl, LLP			
(MY1)	900 Ridgefield Drive Suite 250			
	Raleigh, NC 27609			
Stream Monitoring POC	Pete Stafford (919)878-9560			
Vegetation Monitoring POC	Pete Stafford (919)878-9560			
Wetland Monitoring POC	Pete Stafford (919)878-9560			

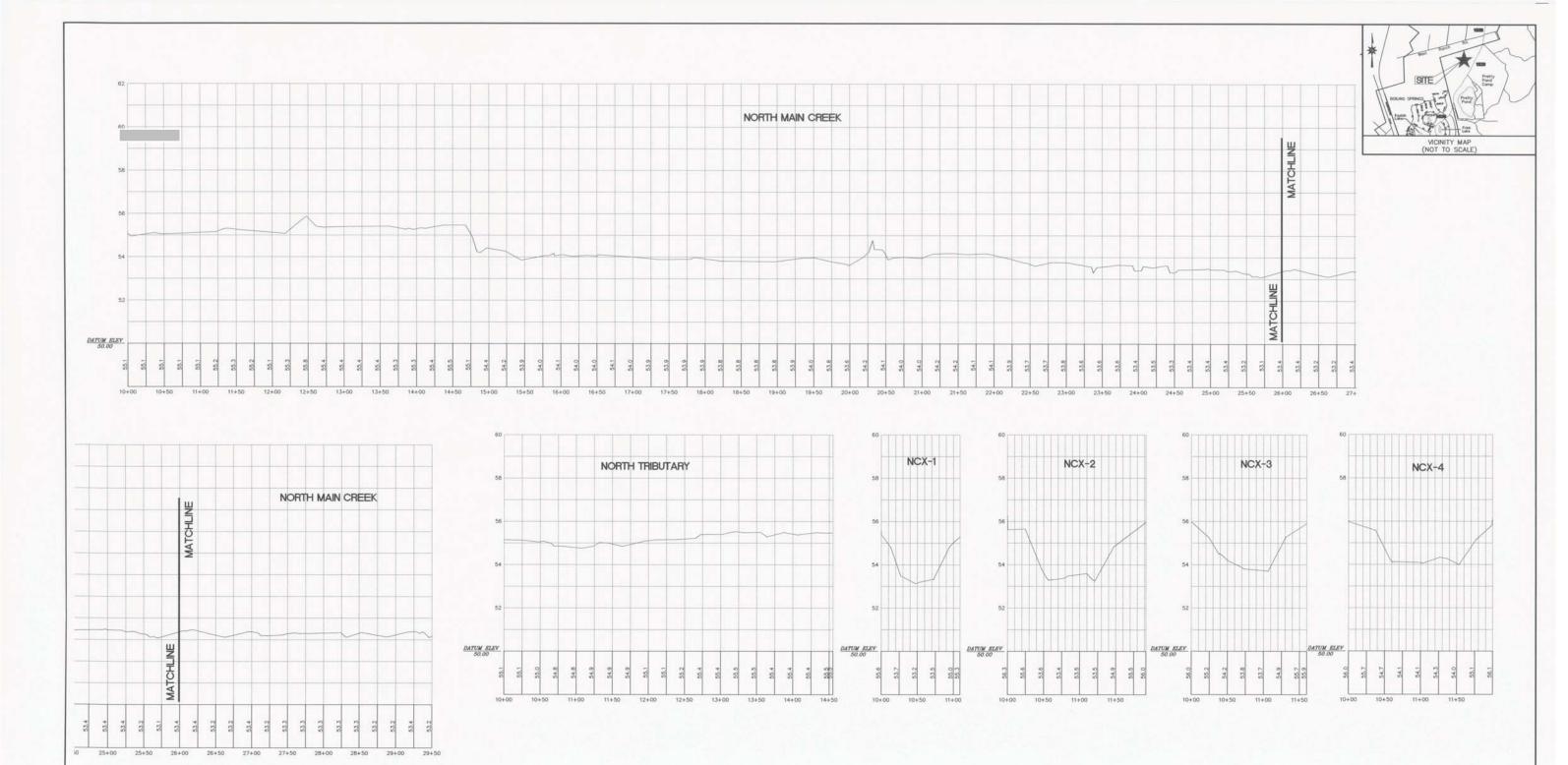

	le 4. Project Baseline Informa eam and Wetland Restoration				
O I Emiput Stiv	Project Informati		Ject 110. 220		
Project Name	-9	UT Lilliput Stream and Wetland Restoration Project			
Project County		Brunswick			
Project Area		517 acres			
Project Coordinates (Lat and Lor	ng)	34.078043,-78.0266	662		
·	Project Watershed Summar	y Information			
Physiographic Region	·	Coastal Plain			
River Basin		Cape Fear			
USGS HUC 8 Digit 03020103		USGS HUC 14 Digi	it 03030005070010		
NCDWQ Subbasin		03-06-17			
Project Drainage Area		N/A			
Project Drainage impervious cov	ver estimate (%)	< 5%			
CGIA Land Use Classification					
	Reach Summary Info	rmation			
Parameters		North Tributary	South Tributary		
Length of Reach		1,535 LF	1,703 LF		
Valley Classification		0 to 1 st order	0 to 1 st order		
Drainage Area		52.49 acres	66.94 acres		
NCDWQ Stream Identification S	Score	N/A	N/A		
NCDWQ Water Quality Classifi	cation	CNSW	CNSW		
Morphological Description (stream	am type)	0 to 1 st order	0 to 1 st order		
Evolutionary Trend		N/A	N/A		
Underlying Mapped Soils		Leon	Murville		
Drainage Class		Poorly Drained	Poorly Drained		
Soil Hydric Status		Hydric A	Hydric A		
Slope		.001	.001		
FEMA Classification		Zone X	Zone X		
Native Vegetation Community		N/A	N/A		
Percent Composition Exotic Inva	asive Vegetation	< 1%	< 1%		
	Wetland Summary Info	ormation			
Parameter	Wetland 1	Wetland 2			
Size (acres)	87.74	22.45			
Wetland Type	land Type Non-Riparian		Riparian		
Mapped Soils Series	Murville and Leon	Muckalee			
Drainage Class	Very Poorly Drained, Poorly drained	Very poorly drained			
Soil Hydric Status	Soil Hydric Status A		A		
Source of Hydrology Groundwater		Groundwater			
Hydrologic Impairment	N/A	N/A			
Native Vegetation Community	Long Leaf Pine	Coastal Plain Blackwater Small Stream			
Percent of Exotic/Invasive Veg	<1%		<1%		

Table 4. Continued UT Lilliput Stream and Wetland Restoration Project - EEP Project No. 290

Regulatory Considerations					
Regulation	Applicable?	Resolved?	Supporting Documentation		
Waters of the United States – Section 404	Yes	Yes	Upon Request		
Waters of the United States – Section 401	Yes	Yes	Upon Request		
Endangered Species Act	Yes	Yes	Upon Request		
Historic Preservation Act	Yes	Yes	Upon Request		
Coastal Zone Management Act (CZMA)					
Coastal Area Management Act (CAMA)	Yes	Yes	Upon Request		
FEMA Floodplain Compliance	Yes	Yes	Upon Request		
Essential Fisheries Habitat	No				

APPENDIX B

Morphological Summary Data, Plots, and Photos

SECTION LOCATION MARKER

O SURFACE GAUGE, ELEVATION SHOT AT CAUBRATION POINT

IRON ROD FOUND AT CORNERS OF VEGETATION PLOTS

GROUNDWATER GAUGE

000000000000 FLOW DISRUPTER LIMITS OF GRADING

NOTES:

1) ALL DISTANCES SHOWN ARE GROUND HORIZONTAL UNLESS OTHERWISE NOTED.

2) HORIZONTAL DATUM IS NAD 83, 1986.

3) VERTICAL DATUM IS NOVO 29.

4) RECORD DRAWNO— THE INFORMATION SHOWN HEREON IS TAKEN FROM CONTRACTOR RECORDS AND POST—CONSTRUCTION SURVEY.

5) ALL CONTOURS SHOWN IN CREY SCALE AND DASHED ARE REFERENCED FROM PREVIOUS SURVEYS AND ARE FOR INFORMATIONAL PURPOSES ONLY.

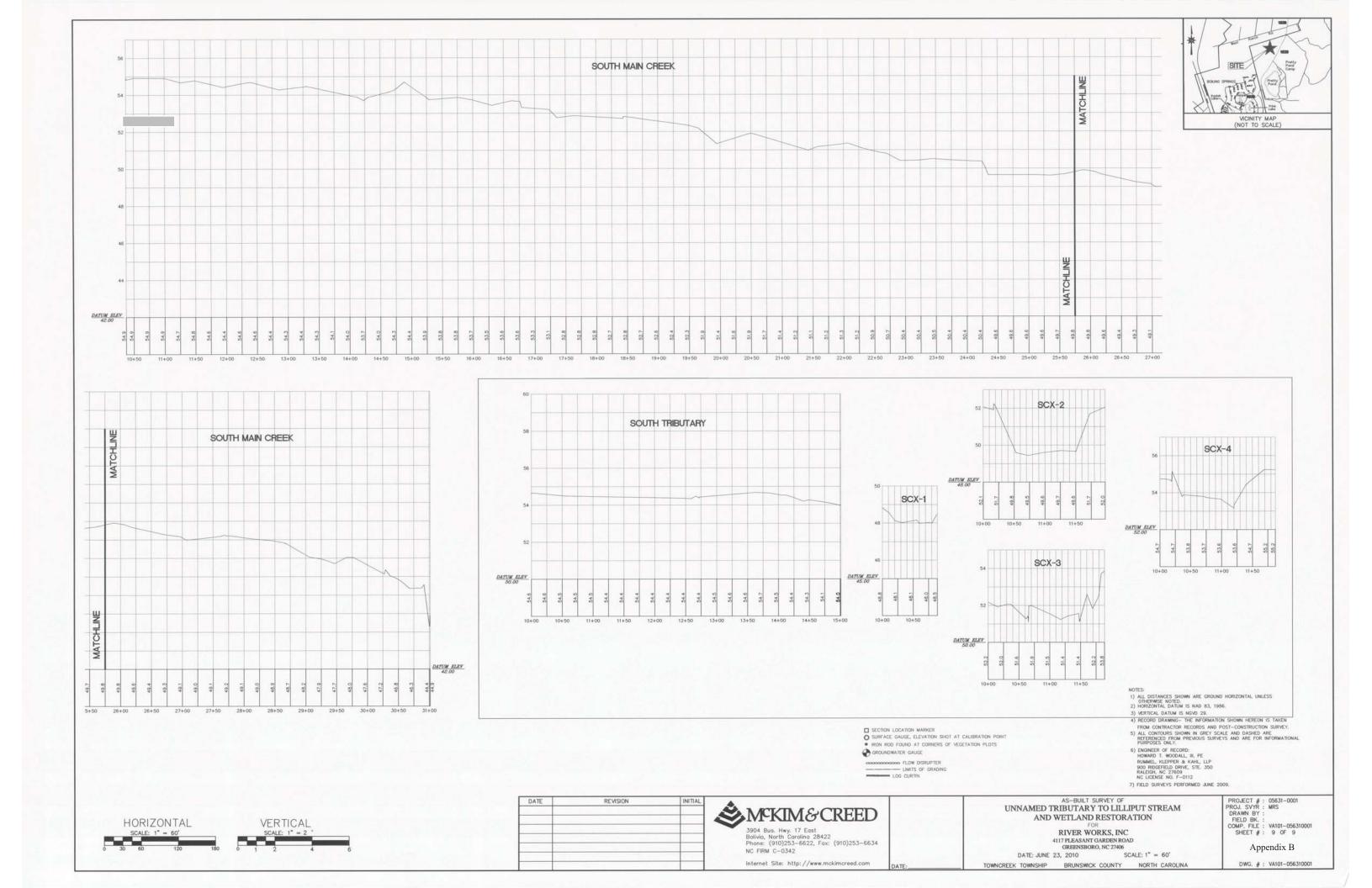
6) EXIGINEE OF RECORD:
HOWARD T. WOODALL III, PE
900 RIDGEFELD DRIVE, STE. 350
RALIGH, NC 27609

NC LICENSE NO. F—0112

7) FIELD SURVEYS PERFORMED JUNE 2009.

DATE	REVISION	INITIAL	

3904 Bus. Hwy. 17 East Bolivia, North Carolina 28422 Phone: (910)253-6622, Fax: (910)253-6634 NC FIRM C-0342


Internet Site: http://www.mckimcreed.com

AS-BUILT SURVEY OF UNNAMED TRIBUTARY TO LILLIPUT STREAM AND WETLAND RESTORATION

> RIVER WORKS, INC 4117 PLEASANT GARDEN ROAD GREENSBORO, NC 27406

DATE: JUNE 23, 2010 SCALE: 1" = 60' TOWNCREEK TOWNSHIP BRUNSWICK COUNTY NORTH CAROLINA PROJECT #: 05631-0001
PROJ. SVYR: MRS
DRAWN BY:
FIELD BK.:
COMP. FILE: VA101-056310001
SHEET #: 8 0F 9 Appendix B

DWG. #: VA101-056310001

Appendix B - Stream and Cross Section Photos (all photos recorded on December 6, 2010)

Photo Station 1. Southern Tributary Station 15+00 – Looking upstream

Photo Station 2. Southern Tributary Station 15+00 – SCX4 - Looking downstream

Photo Station 3. Southern Tributary Station 23+00 – SCX3 - Looking upstream

Photo Station 4. Southern Tributary Station 23+00 – SCX2 - Looking downstream

Photos recorded on December 6, 2010

Photo Station 5. Southern Tributary Station 29+00 – Looking upstream

Photo Station 6. Southern Tributary Station 29+00 – SCX1 - Looking downstream

Photo Station 7. Northern Tributary Station 14+00 – NCX4 - Looking downstream

Photo Station 8. Northern Tributary Station 21+00 – NCX3 - Looking upstream

Photo Station 9. Northern Tributary Station 21+00 – NCX2 - Looking downstream

Photo Station 10. Northern Tributary Station 28+25 – Looking upstream

Photo Station 11. Northern Tributary Station 28+25 –NCX1 - Looking downstream

Photo Station 12. Site 1 Non-Riparian Wetland Restoration

Photo Station 13. Site 2 Non-Riparian Wetland Restoration

Photo Station 14. Site 3 Non-Riparian Wetland Restoration

Photo Station 15. Site 4 Non-Riparian Wetland Enhancement

Photo Station 16. Site 5 Non-Riparian Wetland Enhancement

Photo Station 17. Site 6 Non-Riparian Wetland Restoration (Photo Recorded on 10/2010)

Photo Station 18. Site 7 Non-Riparian Wetland Enhancement

Photo Station 19. Northern Headwater Wetland, Northern Prong



Photo Station 20. Northern Headwater Wetland, Southern Prong

Photo Station 21. Southern Headwater Wetland, Northern Prong

Photo Station 22. Southern Headwater Wetland, Southern Prong

Photo Station 23. Non-RiparianWetland Enhancement Area, General Site Photos

Photo Station 24. Non-RiparianWetland Enhancement Area, General Site Photos

Photo Station 25. Non-RiparianWetland Enhancement Area, General Site Photos

APPENDIX C

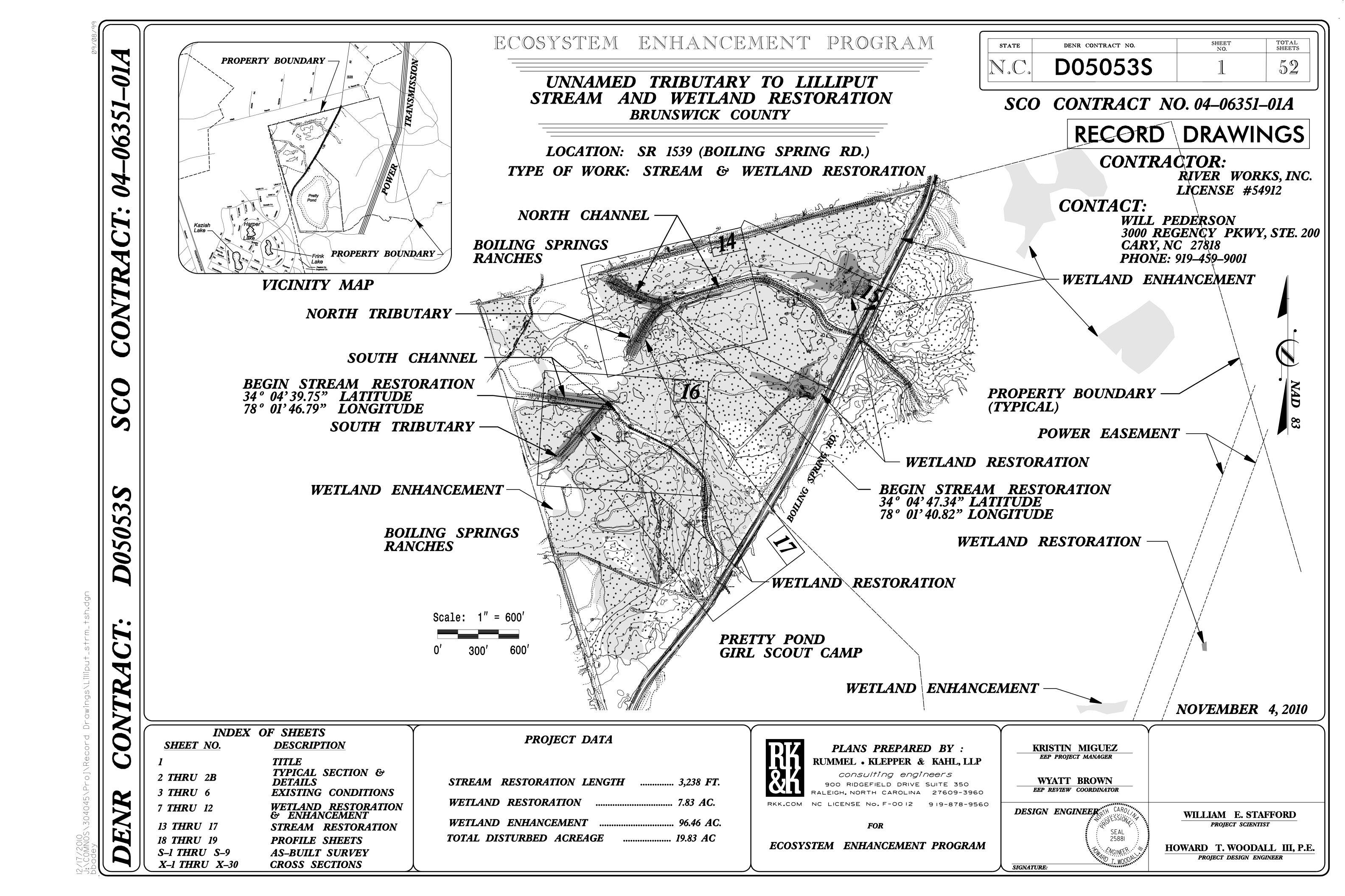

Vegetation Data

Table 7. Planted and Total Stem Counts (Species by Plot with Annual Means)

			CURREN	T DATA (Bas	seline 2010	0)																				ANNUAL N	MEANS
			Plot 1		Plot 2		Plot 3		Plot 4	Plot 5		Plot 6	Plot 7	Plot 8		Plot 9	Plot 10		Plot 11	Plot 12		Plot 13	Plot 14		Plot 15	As Built (2	.010)
Scientific Name	Common Name	Type	Р	T*	Р	T*	Р	T*	P T*	Р	T*	Р Т	* P T*	Р	T*	P T*	Р	T*	P T*	Р	T*	P T*	Р	T*	P T*	Р	T*
Magnolia virginiana	sweetbay	Tree		6		2		2					6		3	2										21	1
Nyssa biflora	swamp tupelo	Tree													1											1	1
Pinus palustris	longleaf pine	Tree								7	7	8					20		18	12	2	18	1	7	18	118	3
Pinus serotina	pond pine	Tree		7		7		7	3	6	5	12	6		12	4				9	9					73	3
Quercus sp.	oak sp.	Tree		4		5		9	9				7		7	6										47	7
Quercus lyrata	overcup oak	Tree														3										3	3
		Plot Area	ı (a	0.025		0.025	0	.025	0.025	0.	.025	0.02	5 0.025		0.025	0.025	0.	025	0.025	0.	.025	0.025	0	.025	0.025		
* Not Applicable for Baseline	Species Count			3		3		3	2	2	2	2	3		4	4	1		1	<u> </u>	1	1		1	1	6	õ
Type = Tree or Shrub	Stem Count		:	17		14	1	8	12	13	3	20	19		23	15	20		18	21	1	18	1	7	18	263	3
P = Planted, T = Total	Stems/Acre		687.4	48	566	5.16	727.9	2	485.28	525.72	2	808.8	768.36	930.	.12	606.6	808.8		727.92	849.24	4	727.92	687.4	8	727.92	709	

APPENDIX D

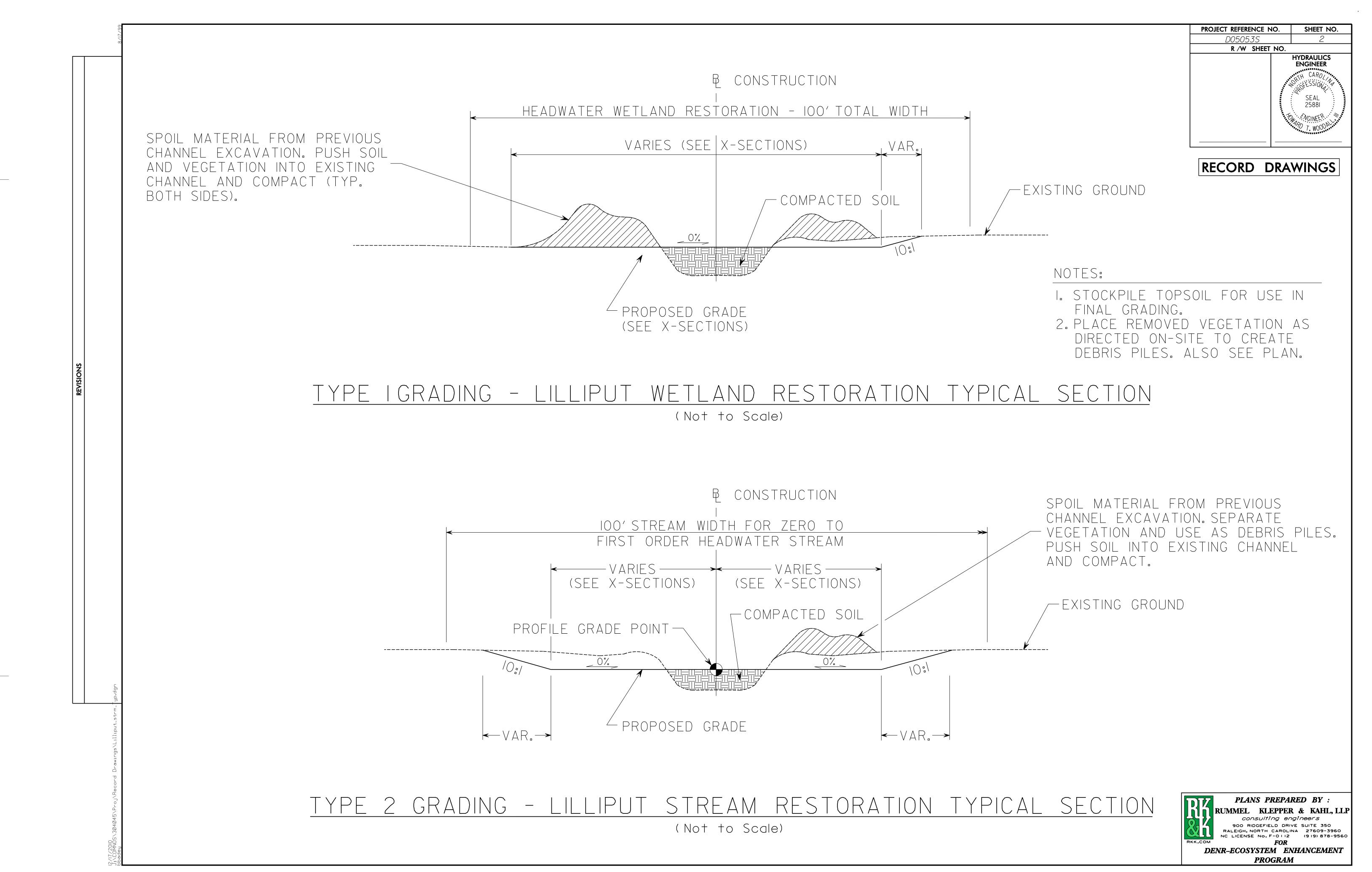
As-Built Plan Sheets

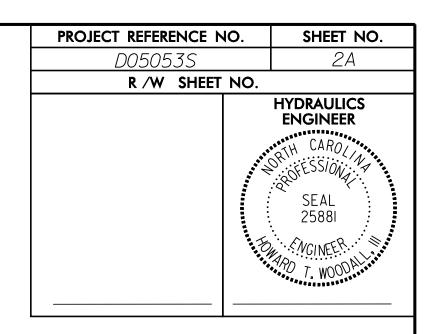
STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

RECORD DRAWINGS

*S.U.E = SUBSURFACE UTILITY ENGINEER

CONVENTIONAL SYMBOLS


ROADS & RELATED ITE	MS
Edge of Pavement	
Curb	
Prop. Slope Stakes Cut	
Prop. Slope Stakes Fill	
Prop. Woven Wire Fence	
Prop. Chain Link Fence	
Prop. Barbed Wire Fence	
Prop. Wheelchair Ramp Curb Cut For Future Wheelchair Ramp	
Exist. Guardrail	
Prop. Guardrail	
Exist. Cable Guiderail	
Prop. Cable Guiderail	
Equality Symbol Pavement Removal	•
RIGHT OF WAY	
Baseline Control Point	•
Existing Right of Way Marker	\wedge
Exist. Right of Way Line w/Marker	
Prop. Right of Way Line with Proposed	
R/W marker (Iron Pin & Cap)	
Prop. Right of Way Line with Proposed	_
(Concrete or Granite) R/w Marker	
Exist. Control of Access Line	
Prop. Control of Access Line	
	_
Exist. Easement Line	
Prop. Temp. Construction Easement Line	
Prop. Temp. Drainage Easement Line	
Prop. Perm. Drainage Easement Line	——— PDE ———
HYDROLOGY	
Stream or Body of Water	
Flow Arrow	<i></i> ···→
Disappearing Stream	•
Spring	
Swamp Marsh	<u>\</u>
Shoreline	
Falls Davids	
•	
Prop Lateral, Tail, Head Ditches	FLOW
STRUCTURES	
MAJOR	
Bridge, Tunnel, or Box Culvert	CONC
Bridge Wing Wall, Head Wall	,
and End Wall)CONC WW(


MINOR	
Head & End Wall	CONC HW
Pipe Culvert	<u> </u>
Footbridge	>
Drainage Boxes	СВ
Paved Ditch Gutter	
UTILITIES	
Exist. Pole	•
Exist. Power Pole	•
Prop. Power Pole	6
Exist. Telephone Pole	-
Prop. Telephone Pole	-0-
Exist. Joint Use Pole	-
Prop. Joint Use Pole	-6-
Telephone Pedestal	T
Cable TV Pedestal	С
Hydrant	•◊
Satellite Dish	\varnothing
Exist. Water Valve	\otimes
Sewer Clean Out	$\widehat{\mathbb{H}}$
Power Manhole	P
Telephone Booth)
Water Manhole	W
Light Pole	¤
H-Frame Pole	•—•
Power Line Tower	
Pole with Base	·
Gas Valve	\Diamond
Gas Meter	\Diamond
Telephone Manhole	T
Power Transformer	 ✓
Sanitary Sewer Manhole	(
Storm Sewer Manhole	S
Tank; Water, Gas, Oil	\bigcirc
Water Tank With Legs	\searrow
Traffic Signal Junction Box	S S
Fiber Optic Splice Box	F
Television or Radio Tower	\otimes
Utility Power Line Connects to Traffic	O
Signal Lines Cut Into the Pavement	TSTS

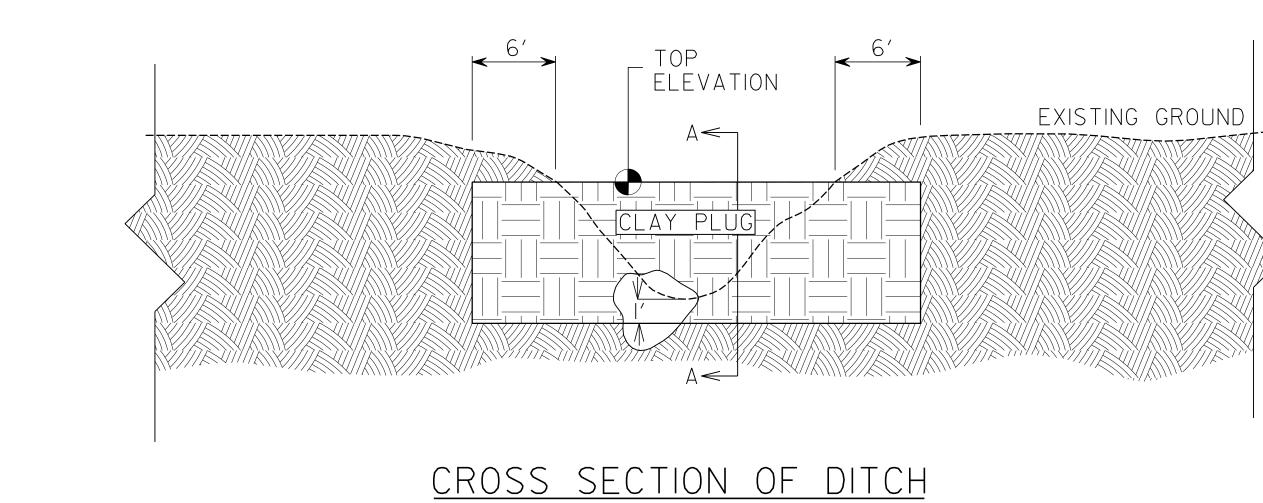
Decembed Wester Line	
Recorded Water Line	
Designated Water Line (S.U.E.*)	
Sanitary Sewer	
Recorded Sanitary Sewer Force Main	
Designated Sanitary Sewer Force Main(S.U.E.*)	FSSFSS
Recorded Gas Line	
Designated Gas Line (S.U.E.*)	
Storm Sewer	
Recorded Power Line	
Designated Power Line (S.U.E.*)	
Recorded Telephone Cable	
Designated Telephone Cable (S.U.E.*)	
Recorded U/G Telephone Conduit	
Designated U/G Telephone Conduit (S.U.E.*)	
Unknown Utility (S.U.E.*)	
Recorded Television Cable (C.U.E.*)	
Designated Television Cable (S.U.E.*)	
Recorded Fiber Optics Cable	· · · · · · · · ·
Designated Fiber Optics Cable (S.U.E.*) Exist Water Motor	
Exist. Water Meter	0
U/G Test Hole (S.U.E.*)	
Abandoned According to U/G Record End of Information	ATTUR
	E.O.I.
BOUNDARIES & PROPER	TIES
State Line	
County Line	
Township Line	
City Line	
Reservation Line	
Property Line	
	П
Property Line Symbol	T_
Property Line Symbol Exist. Iron Pin Property Corner	EIP
Exist. Iron Pin	EIP
Exist. Iron Pin Property Corner	EIP +
Exist. Iron Pin Property Corner Property Monument Property Number	EIP +
Exist. Iron Pin Property Corner Property Monument Property Number Parcel Number	EIP +
Exist. Iron Pin Property Corner Property Monument Property Number Parcel Number Fence Line	EIP +
Exist. Iron Pin Property Corner Property Monument Property Number Parcel Number Fence Line Existing Wetland Boundaries	EIP + ECM 123 6
Exist. Iron Pin Property Corner Property Monument Property Number Parcel Number Fence Line Existing Wetland Boundaries Proposed Wetland Boundaries	EIP
Exist. Iron Pin Property Corner Property Monument Property Number Parcel Number Fence Line Existing Wetland Boundaries	EIP

BUILDINGS & OTHER CULTURE Ruildings

Buildings	
Foundations	
Area Outline	
Gate	*
Gas Pump Vent or U/G Tank Cap	•
Church	
School	
Park	
Cemetery	·- []
Dam	
Sign	<u>©</u> S
Well	O
Small Mine	☆
Swimming Pool	
<i>TOPOGRAPHY</i>	
Loose Surface	
Hard Surface	
Change in Road Surface	
Curb	
Right of Way Symbol	R/W
Guard Post	⊙ GP
Paved Walk	
Bridge	
Box Culvert or Tunnel	
Ferry	,
Culvert	>
Footbridge	
Trail, Footpath	
Light House	
	Χ •Χ
VEGETATION Single Tree	···· :
Single Shrub	<u>~</u>
Hedge	· ·
Woods Line	
Orchard	
Vineyard	
RAILROADS	VINEYARD
Standard Gauge	
RR Signal Milepost	CSX TRANSPORTATION ©
Switch	MILEPOST 35
— ,, —	

RECORD DRAWINGS

PROPOSED FILL


PROPOSED FILL

ANCHOR CURTAIN SECTIONS
TOGETHER WITH 1/2" DIAMETER REBAR
BRASS PINS (4' LONG) DRIVEN
VERTICALLY THROUGH LOGS

I2"-I8" DIAMETER LOGS
(4'-6' LONG)
(HARDWOOD)

LOG CURTAIN

(Not to Scale)

PROPOSED DITCH FILL

EXISTING BOTTOM W

OF DITCH

SECTION A-A

DITCH PLUG
(Not to Scale)

PLANS PREPARED BY:

RUMMEL KLEPPER & KAHL, LLP

consulting engineers

900 RIDGEFIELD DRIVE SUITE 350

RALEIGH, NORTH CAROLINA 27609-3960

NC LICENSE NO. F-0112 (919) 878-9560

FOR

DENR-ECOSYSTEM ENHANCEMENT

PROGRAM

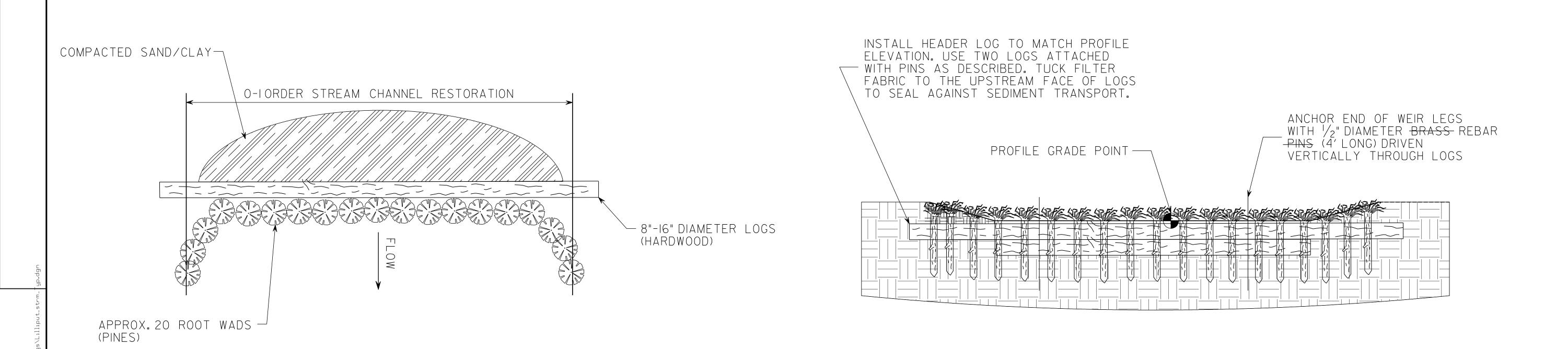
PROJECT REFERENCE NO.

DO5053S

R /W SHEET NO.

HYDRAULICS
ENGINEER

SEAL
25881

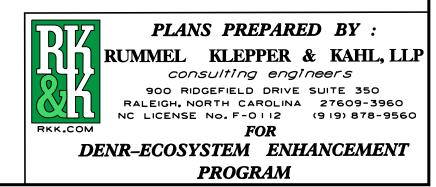

TO T. WOODALLICS
TO T. WOOD

RECORD DRAWINGS

O-I ORDER STREAM CHANNEL RESTORATION SEE PLAN FOR PLACEMENT DRIVE ROOT WADS VERTICALLY TO BASE OF TRUNK, KEEP ROOT FAN EXPOSED, DO NOT INSTALL HEADER LOGS, COMPACT SOIL AROUND ROOT WADS AFTER INSTALLATION. 8"-12" DIAMETER MIXED HARDWOODS PINES (6'-10' LENGTH)

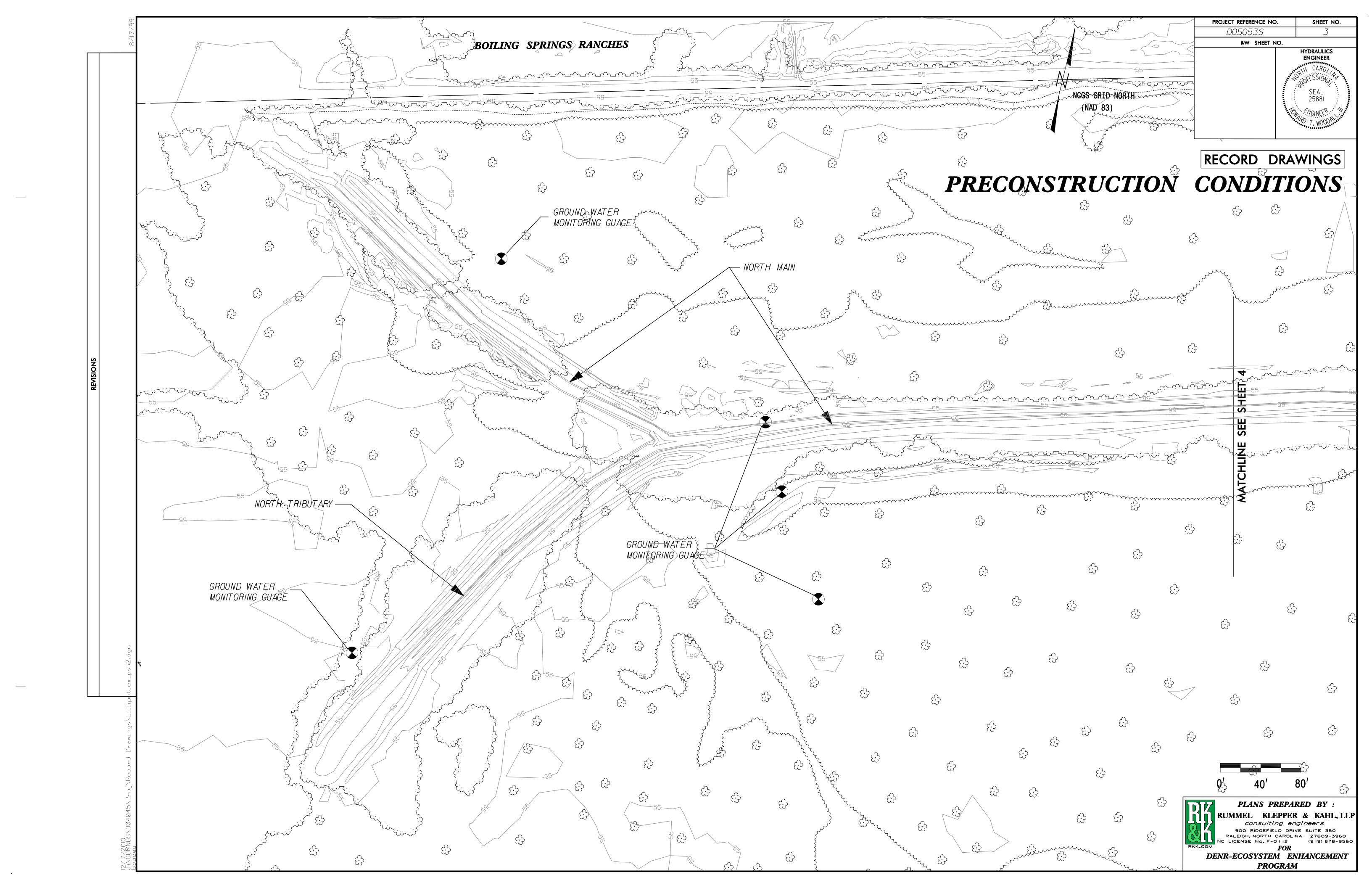
FLOW DISRUPTER

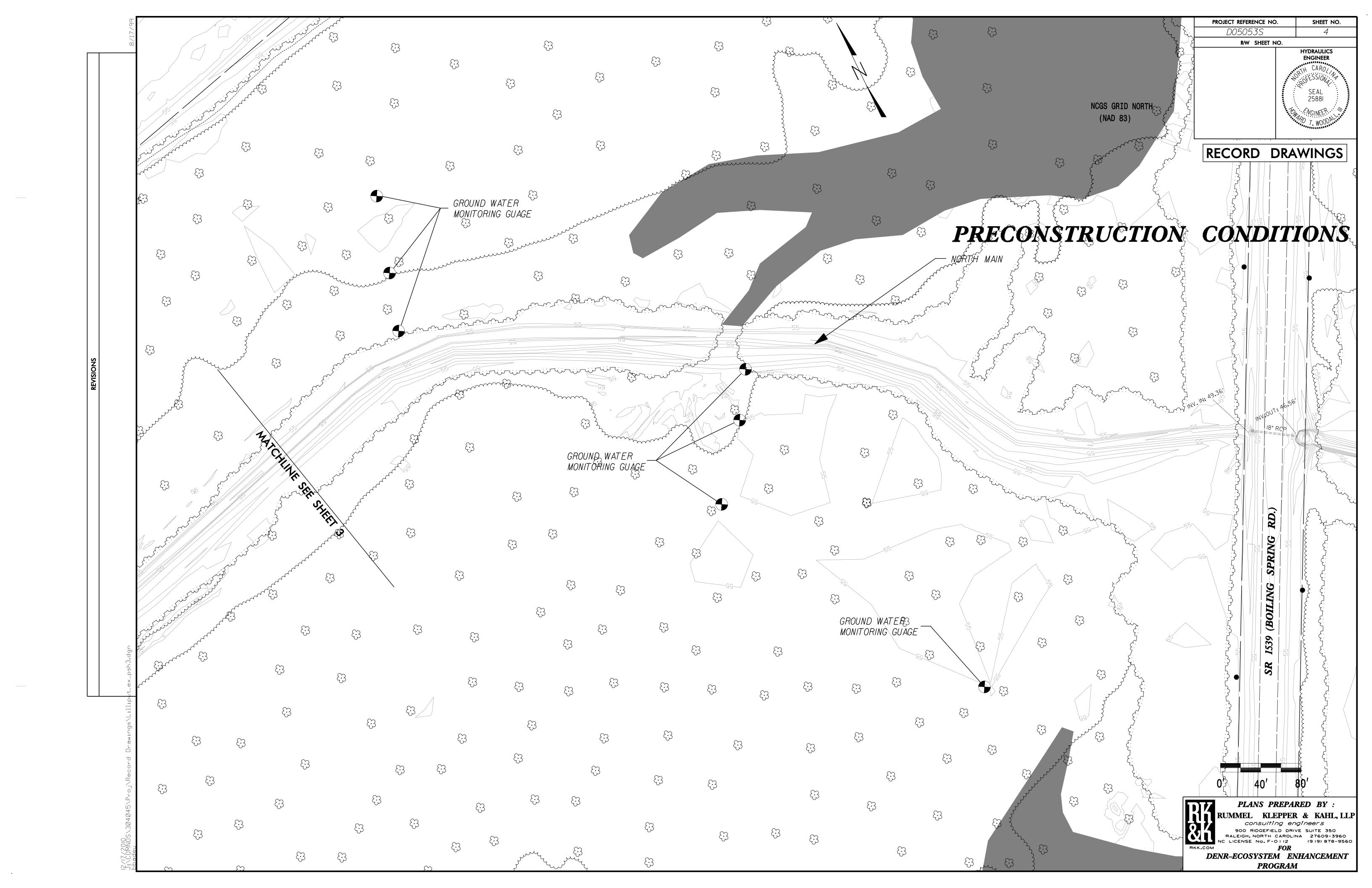
(Not to Scale)

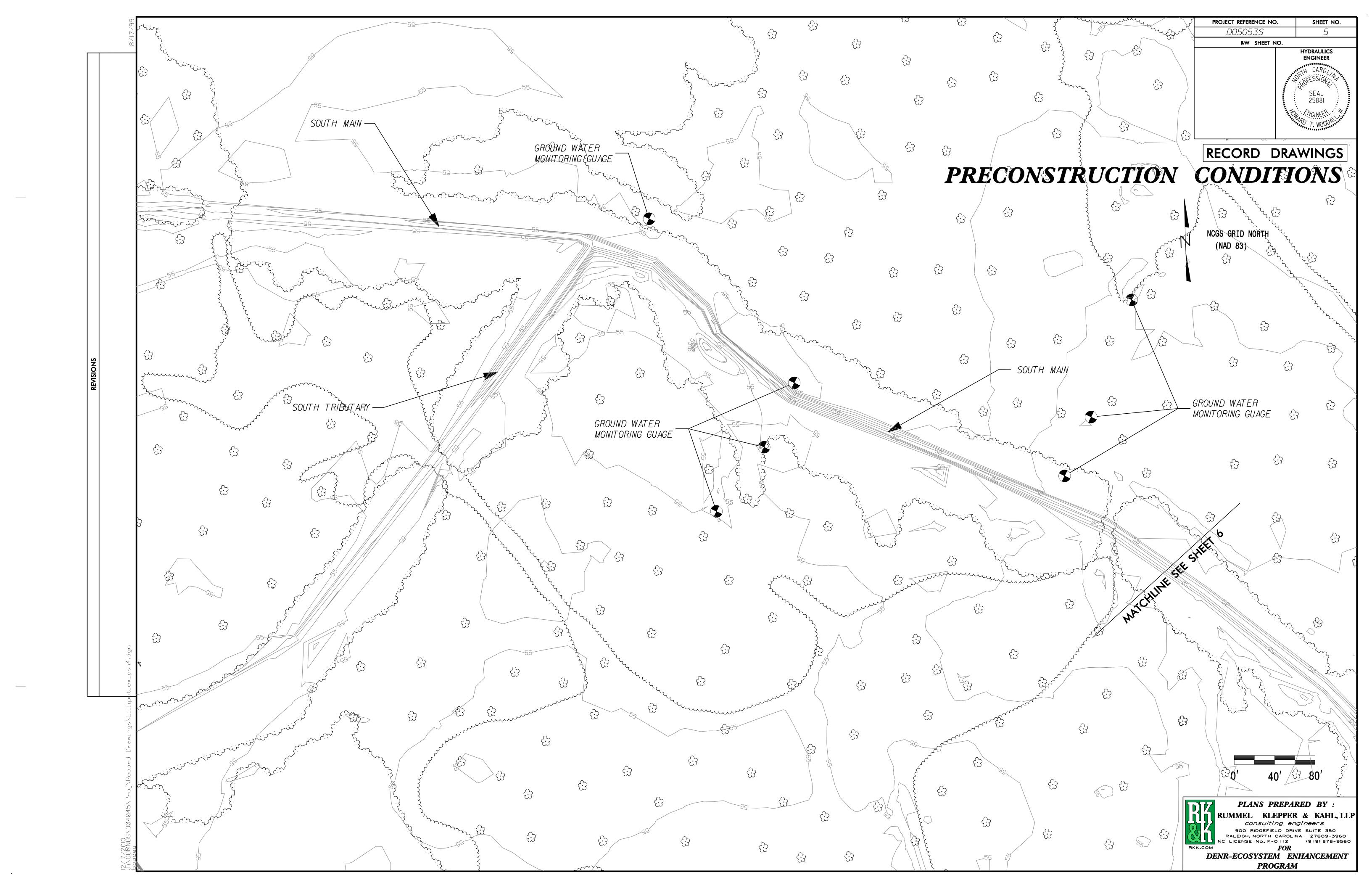


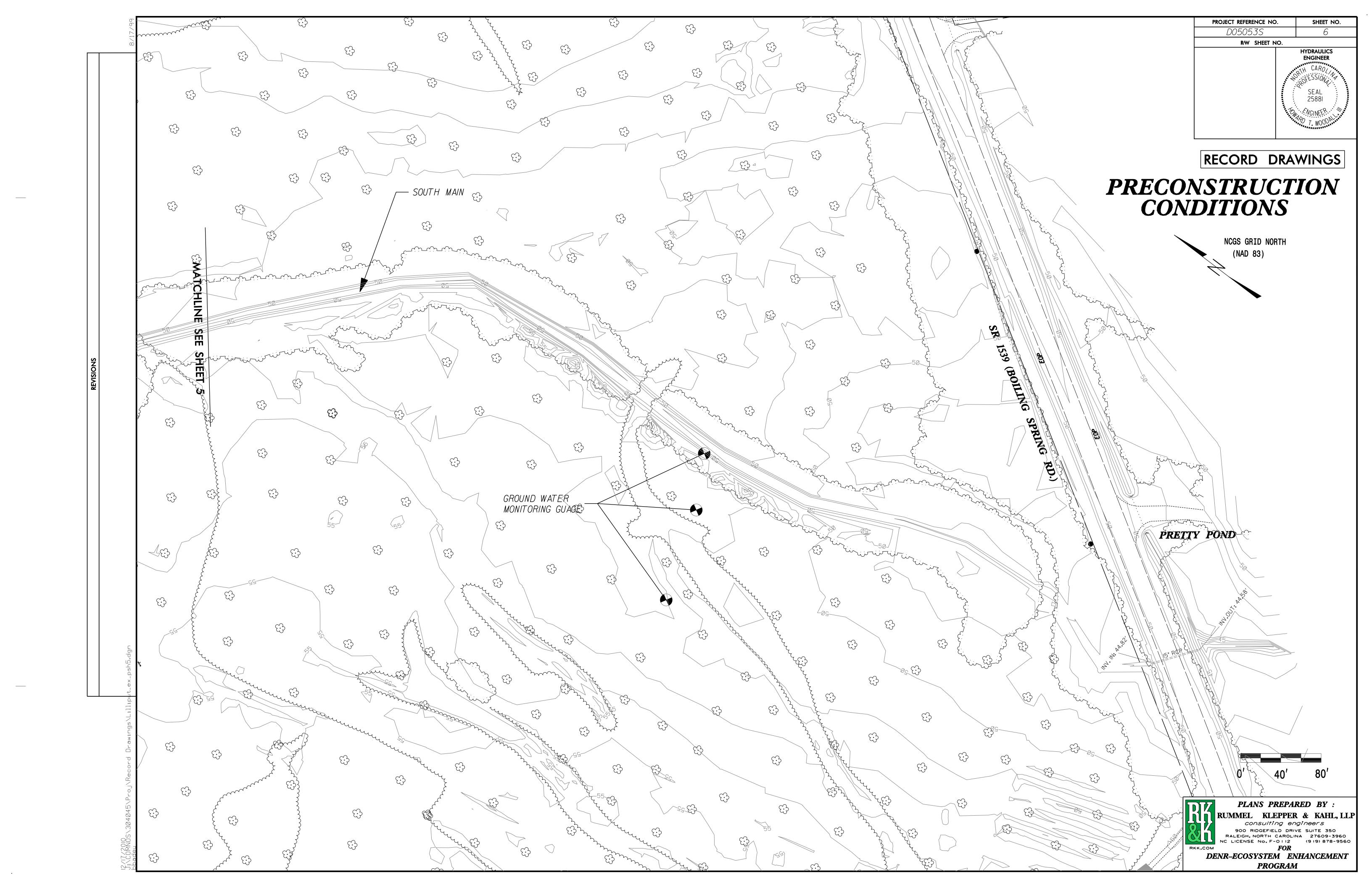
CONTROLLED STEP WEIR

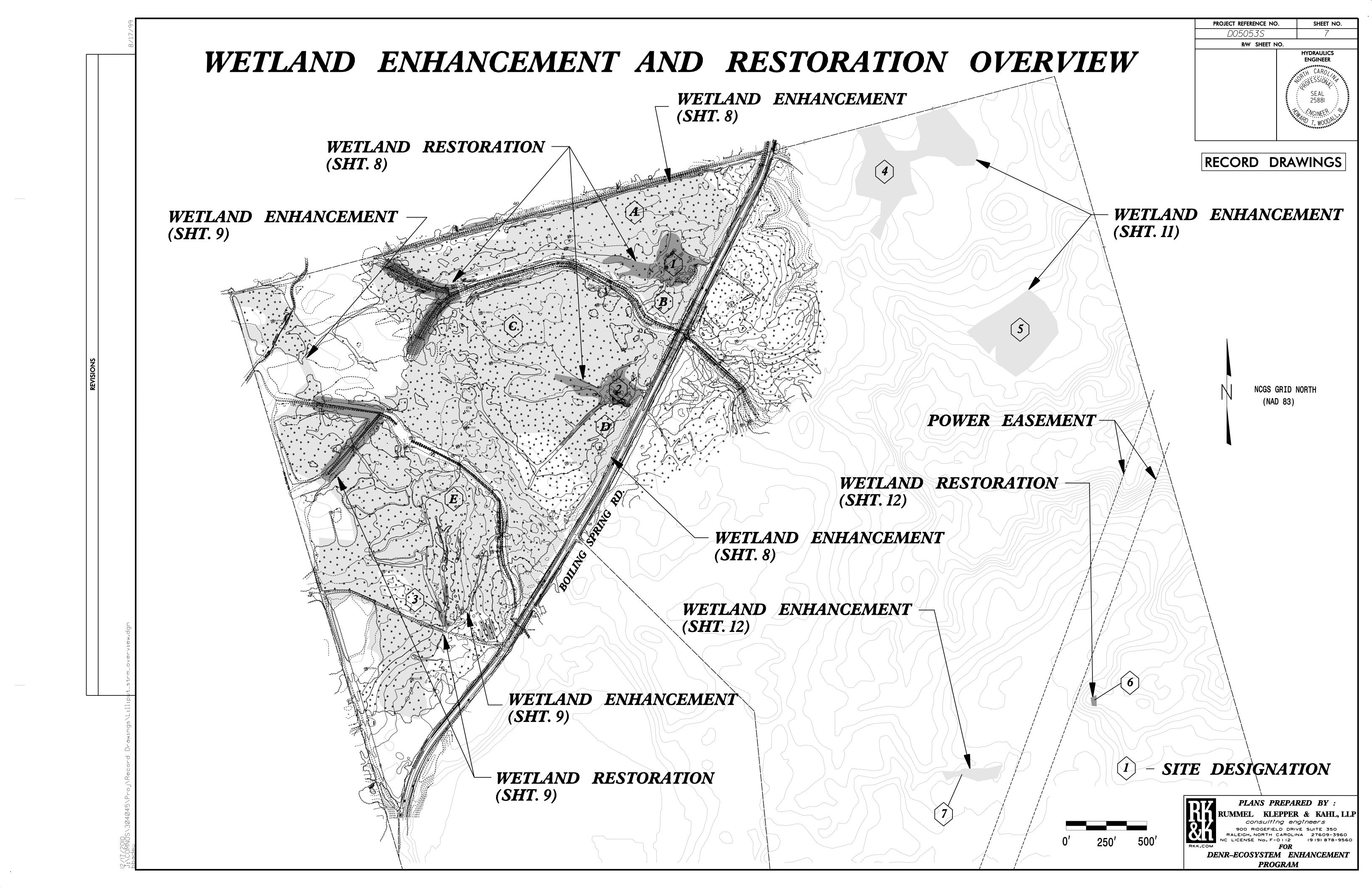
PLAN VIEW


(Not to Scale)


(Not to Scale)




CROSS SECTION


(Not to Scale)

WETLAND ENHANCEMENT AREA (SEE SHEETS 9 & 10)

	SITE	С	SITE C				
POINT	NORTH (ft)	EAST (ft)	POINT	NORTH (ft)	EAST (ft)		
1300	121,202.30	2,295,678.77	1330	121,032.53	2,294,053.93		
209*	120,854.04*	2,295,501.20*	1331	121,075.56	2,294,066.70		
208*	120,869.97*	2,295,485.03*	1332	121,078.23	2,294,095.02		
207*	120,878.59*	2,295,467.71*	1333	121,088.60	2,294,111.05		
206*	120,903.55*	2,295,433.64*	1334	121,099.46	2,294,//9.57		
205*	120,944.70*	2,295,386.28*	1335	121,319.17	2,294,247.49		
204*	120,966.59*	2,295,385.67*	1336	121,388.43	2,294,307.15		
203*	120,983.67*	2,295,391.73*	1337	121,426.14	2,294,372.30		
202*	121,012.50*	2,295,414.45*	1338	121,457.10	2,294,451.27		
201*	121,034.16*	2,295,430.04*	1339	121,473.76	2,294,500.48		
200*	121,040.83*	2,295,423.52*	1340	121,534.40	2,294,712.06		
243×	121,024.15*	2,295,391.16*	1341	121,595.04	2,294,923.64		
242×	121,004.62*	2,295,358.65*	1342	121,604.10	2,294,992.52		
24/*	120,973.44*	2,295,306.87*	1343	121,600.90	2,295,027.21		
240*	120,932.78*	2,295,277.14*	1344	121,592.62	2,295,061.04		
239*	120,900.81*	2,295,249.31*	1345	121,579.42	2,295,093.28		
238*	120,875.59*	2,295,223.45*	1346	121,479.24	2,295,294.12		
237*	120,927.53*	2,295,125.14×	1347	121,456.59	2,295,333.04		
236*	120,963.92*	2,294,950.99*	1348	121,429.13	2,295,368.72		
235*	120,933.79*	2,294,944.38*	1349	121,394.29	2,295,408.43		
234*	120,916.65*	2,294,970.93*	1350	121,380.52	2,295,420.50		
233×	120,903.61*	2,295,006.27*	1351	121,364.09	2,295,428.58		
232*	120,877.25*	2,295,055.73*	1352	121,335.64	2,295,440.59		
23/*	120,836.75*	2,295,083.25*	1353	121,309.26	2,295,456.65		
230*	120,822.43*	2,295,112.26*	1354	121,285.52	2,295,476.40		
229*	120,820.72*	2,295,179.93*	1355	121,264.93	2,295,499.41		
228*	120,809.26*	2,295,219.34*	/356	121,247.94	2,295,525.20		
227×	120,789.89*	2,295,220.19*	1357	121,234.92	2,295,553.20		
226*	120,767.78*	2,295,212.47*	1358	121,218.20	2,295,597.40		
225*	120,711.08*	2,295,138.82*	/359	121,201.47	2,295,641.59		
224*	120,661.61*	2,295,101.81*	/360	121,198.43	2,295,661.06		
223*	120,609.15*	<i>2,295,057.44</i> *					
222*	120,575.03*	2,295,023.36*					
			1				

	SITE	D
POINT	NORTH (ft)	EAST (ft)
1370	120,410.64	2,295,280.//
1371	120,304.33	2,295,224.64
1372	120,262.25	2,295,199.73
1373	120,282.07	2,295,178.47
1374	120,496.68	2,295,007.73
220×	120,513.87*	2,294,990.09*
219*	120,542.03*	2,295,021.63*
218*	120,578.32*	2,295,060.0/*
217*	120,651.12*	2,295,127.68*
216*	120,703.98*	2,295,172.38*
215*	120,747.91*	2,295,229.6/*
214*	120,778.94*	2,295,283.5/*
213*	120,759.05*	2,295,373.5/*
212*	120,756.83*	2,295,407.94*
2//*	120,790.23*	2,295,457.45*
210*	120,825.18*	2,295,482.97*

^{*} SHARED BOUNDARY WITH SITE 2

PROJECT REFERENCE NO) .	SHEET NO.
D05053S		8
RW SHEET N	10.	
		HYDRAULICS ENGINEER
	A CONTRACTOR OF THE CONTRACTOR	SEAL 25881 25881 7. WOODALL

_,	J 1		I WOO
2,294,411.49			***************************************
2,294,340.78]		!
2,294,319.37*] R	RECORD	DRAWING
2,294,282.8/*		COND	
2,294,267.02*		SITE	E
2,294,233.52*	POINT	NORTH (ft)	EAST (ft)
2,294,217.65*	1513	120,261.21	2,293,540.00
2,294,221.90*	1514	120,372.74	2,293,299.96
2,294,227.84*	1515	120,698.79	2,293,223.65
2,294,225.67*	1516	120,726.91	2,293,286.88
2,294,253.40*	1517	120,851.94	2,293,348.64
2,294,275.54*	1518	120,915.51	2,293,419.63
2,294,240.63*	1519	121,061.92	2,293,350.72
2,294,218.06*	1520	121,127.21	2,293,177.68
2,294,209.98*	1521	121,170.56	2,293,046.74
2,294,180.26	1522	121,019.00	2,293,090.05
2,294,175.67	1523	120,867.43	2,293,/33.36
2,294,/55.42	1524	120,860.05	2,293,117.51
2,294,143.95	1525	121,066.74	2,293,055.43
2,294,141.27	1526	121,259.11	2,292,999.85
2,294,/55.42	1527	121,268.05	2,293,052.36
2,294,157.33	1528	121,260.20	2,293,102.12
2,294,142.04	1529	121,274.77	2,293,156.46
2,294,117.20	1530	121,308.38	2,293,/63.33
2,294,091.28	1531	121,331.75	2,293,151.78
2,294,059.87	1532	121,358.39	2,293,112.87
2,294,027.38	1533	121,376.12	2,293,060.47
2,293,891.70	1534	121,379.99	2,292,995.89
2,293,872.74	1535	121,387.11	2,292,960.88
2,293,861.13	1536	121,451.52	2,292,940.29

			1		
	SITE	<u>A</u>		SITE	A
POINT	NORTH (ft)	EAST (ft)	POINT	NORTH (ft)	EAST (ft)
1100	122,232.74	2,295,876.48	1131	121,434.11	2,294,201.89
1101	122,205.66	2,295,849.16	1132	121,431.16	2,294,203.83
1102	122,096.86	2,295,970.10	1133	121,426.18	2,294,202.18
1103	121,994.68	2,296,078.76	1134	121,400.95	2,294,181.73
109*	121,652.36*	2,295,906.06*	//35	121,369.48	2,294,161.07
108*	121,660.18*	2,295,877.90*	1136	121,240.50	2,294,085.97
107*	121,679.08*	2,295,827.26*	1137	121,262.25	2,294,062.57
106*	121,713.16*	2,295,771.66*	1138	121,363.89	2,293,908.87
<i>105*</i>	121,737.5/*	2,295,749.35*	//39	121,670.46	2,293,765.92
104*	121,756.67*	2,295,738.89*	1140	121,722.23	2,293,963.98
103*	121,786.44*	2,295,729.87*	1141	121,766.53	2,294,125.62
102*	121,811.33*	2,295,7/9.39*	1142	121,745.40	2,294,142.25
/0/*	121,829.02*	2,295,702.23*	1143	121,694.06	2,294,187.77
/00*	121,837.66*	2,295,673.30*	1144	121,739.68	2,294,318.51
<i>145*</i>	121,831.74*	2,295,642.89*	1145	121,785.30	2,294,449.24
144*	121,814.09*	2,295,622.43*	1146	121,796.08	2,294,647.56
143×	121,793.69*	2,295,605.29*	1147	121,913.58	2,294,684.91
142*	121,738.42*	2,295,593.06*	1148	122,063.87	2,295,239.56
<i>141*</i>	121,719.11*	2,295,581.58*	1149	122,160.67	2,295,603.55
140*	121,684.06*	2,295,577.20*			
			7		

150	121,011.00	Z,ZJJ,JJ1,TU
/37*	121,661.02*	2,295,451.67*
136*	121,684.72*	2,295,394.68*
/35*	121,697.53*	2,295,348.6/*
134*	121,692.53*	2,295,294.42*
<i>133</i> *	121,668.50*	2,295,246.90*
132×	121,650.89*	2,295,243.06*
/3/*	121,642.16*	2,295,249.22*
/30*	121,644.79*	2,295,290.69*
129*	121,650.76*	2,295,334.85*
128*	121,634.81*	2,295,374.67*
127*	121,610.17*	2,295,420.//*
126*	121,599.64*	2,295,408.27*
125*	121,586.79*	2,295,351.44*
124*	121,571.12*	2,295,333.96*
1104	121,620.01	2,295,235.94
1105	121,668.91	2,295,/37.92
1106	121,687.72	2,295,091.96
1107	121,701.81	2,295,019.01
1108	121,701.27	2,294,944.71
1109	121,691.17	2,294,896.09
1110	121,630.53	2,294,684.51
////	121,569.89	2,294,472.93
1112	121,550.21	2,294,414.78
1113	121,519.24	2,294,335.80
1114	121,511.46	2,294,3/5.94
1115	121,532.36	2,294,222.89
1116	121,552.07	2,294,163.91
1117	121,587.54	2,294,091.41
1118	121,627.60	2,294,023.00
1119	121,667.66	2,293,954.59
1120	121,674.51	2,293,930.38
1121	121,668.02	2,293,904.67
1122	121,650.75	2,293,886.76
1123	121,618.53	2,293,879.68
1124	121,601.10	2,293,885./4
1125	121,581.37	2,293,904.05
1126	121,541.31	2,293,972.46
1127	121,501.25	2,294,040.87
1128	121,479.31	2,294,081.64
1129	121,459.25	2,294,126.69
//30	121,447.08	2,294,159.75
	,	

| 139* | 121,646.97* | 2,295,579.75*

*138** | *121,644.35** | *2,295,531.40**

121,459.25	2,294,126.69	

* SHARED BOUNDARY WITH SITE I

	SITE	В
POINT	NORTH (ft)	EAST (ft)
//O*	121,631.87*	2,295,893.24*
1200	121,259.95	2,295,707.72
1201	121,295.00	2,295,676.98
1202	121,328.45	2,295,588.59
1203	121,354.95	2,295,548.36
1204	121,396.11	2,295,523.32
1205	121,436.01	2,295,503.69
1206	121,469.46	2,295,474.39
1207	121,504.30	2,295,434.68
1208	121,539.61	2,295,388.79
122*	121,559.22*	2,295,355.09*
121*	121,572.35*	2,295,410.89*
120*	121,568.18*	2,295,442.87*
119*	121,551.03*	2,295,491.26*
118*	121,554.78*	2,295,539./8*
//7*	121,549.78*	2,295,576.24*
<i>116*</i>	121,523.12*	2,295,640.08*
//5×	121,505.81*	2,295,667.03*
114*	121,501.82*	2,295,704.52*
//3*	121,511.11*	2,295,732.18*
112*	121,544.99*	2,295,786.72*
///*	121,636.24*	2,295,839.78*
* SHARE	D BOUNDAR	Y WITH SITE I

^{120,772.78} 2,293,846.65 120,787.87 2,293,748.13

* SHARFD	BOUNDARY	W/TH	SITF	2
JITANLU	DOUNDAM	VV / / / /	$\mathcal{I}II \; L$	_

120,529.31* | 2,294,974.25*

120,599.98 | 2,294,901.74

120,593.63 2,294,717.66

120,481.55 2,294,669.85

2,294,873.07

2,295,011.98

2,294,984.71

2,294,874.37

2,294,749.30

2,294,734.53

2,294,685.29

2,294,671.88

2,294,671.16

2,294,655.83

2,294,339.01

2,294,098.81

2,294,045.94

2,293,903.17

2,293,878.98

120,249.51 2,294,610.49

120,387.78 | 2,294,459.80

120,432.25 | 2,294,402.09

120,674.66 | 2,294,008.38

120,706.76 | 2,293,979.79

120,745.35 | 2,293,928.12

120,793.22 | 2,293,850.04

120,854.32 | 2,293,986.36

1304 | 120,238.16 | 2,294,782.88

120,142.49 119,959.16

119,909.62

119,738.66

119,528.78

119,674.15

119,790.54

119,859.21 120,075.57

120,167.77

120,468.71

120,587.04

120,626.33

120,757.16

120,765.61

1309

1311

1312

1315

1316

1324

* SHARED BOUNDARY WITH SITE 3

SITE E

121,354.85 2,293,326.85

121,273.76 2,293,400.57

120,824.83 | 2,293,506.82

120,826.52 | 2,293,487.85

120,816.94 | 2,293,461.67

120,802.42 2,293,448.43

120,783.09 | 2,293,441.68

120,734.24 | 2,293,464.75

120,705.54 | 2,293,625.19

120,683.86 | 2,293,766.69

120,680.73 2,293,770.59

120,339.59 2,293,500.36

120,320.18 | 2,293,506.87

120,296.26 | 2,293,540.95

120,295.75 2,293,555.58

120,652.25 | 2,293,886.00

120,650.58 | 2,293,891.83

120,571.89 2,293,959.94

120,542.70 | 2,293,987.91

120,517.69 | 2,294,019.68

120,379.00 | 2,294,294.82

120,186.85 | 2,294,532.56

1437 | 120,497.33 | 2,294,054.62

2,293,252.90

2,293,253.14

2,293,464.24

2,293,409.44

2,293,462.31

2,293,442.54

2,293,451.64

2,293,483.69

2,293,769.71

2,293,512.21

2,293,500.90

2,293,516.87

2,293,576.96

2,293,591.34

2,293,878.73

2,293,916.26

2,293,936.29

2,294,346.43

2,294,393.64

2,294,452.79

2,294,511.94

2,294,561.41

2,294,571.17

2,294,570.60

2,294,570.03

2,294,581.65

2,294,596.42

2,294,635.03

2,294,646.73

2,294,649.78

2,294,641.86

2,294,636./3

2,294,635.16

2,294,644.31

2,294,659.47

2,294,673.63

2,294,641.63

2,294,614.05

2,294,596.85

119,451.45 | 2,294,567.38

 $POINT \mid NORTH (ft) \mid EAST (ft)$

121,532.67

121,413.82

121,195.19

121.065.70

120,961.06

120,765.40

120,746.14

120,675.65

120,378.16

120,354.78

120,308.00

120,303.32

120,316.81

120,648.80

120,629.76

120,604.69

120,349.17

120.312.79

120,260.61

120,208.43

120.134.83

120,076.16

119,979.65

119,883.13

119,788.26

119,742.70

119,659.49

119,617.24

119.529.87

119,490.80

119,468.25

119,441.77

119,422.53

119,412.28

119,410.06

119,353.43

119,399.10

119,423.94

1439

1440

1442

1443

1444

1445

1446

1447

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

SITE E

1463 | 119,473.62 | 2,294,535.70

1464 | 119,499.55 | 2,294,478.29

1465 | 119,487.00

1466 | 119,446.87

*304** | *119,422.99**

*302** | *119,465.54**

*300** | *1/9,556.63**

119,437.66*

//9,552.2/***

//9,507.26*

119,479.44*

//9,449.9/***

//9,4/5.3/*

//9.383.8/*

//9,3/0.60*

//9,288.70*

119,223.29

119,191.82

119,131.56

119,064.68

118,971.74

118,846.83

118,825.81

118,835.36

118,843.01

118,888.87

118,910.65

118,944.29

118,986.33

119,024.55

119,104.80

119,251.95

119.258.10

119,304.96

119,421.50

119,579.31

119.546.48

119,523.39

119,528.53

119,366.19

119,203.86

119,190.80

119,183.24

119,334.74

119,644.61

120,096.15

119,922.04

119,748.19

119,793.20

119,947.25

119,928.85

1512 | 120,087.89 | 2,293,679.70

1503 | 119,802.69

1504 | 120,048.08

1487 | 119,226.75 | 2,293,853.11

1492 | 119,523.49 | 2,293,827.68

2,293,853.48

2,293,855.40

2,293,872.59

2,293,884.47

2,293,882.15

2,293,783.73

2,293,802.47

2,293,800.50

2,293,681.49

2,293,634.99

2,293,592.45

2,293,564.66

2,293,611.28

2,293,657.90

2,293,639.46

2,293,619.44

2,293,574.00

2,293,481.14

2,293,433.80

2,293,361.15

2,293,347.65

2,293,411.55

2,293,463.40

2,293,492.30 2,293,489.66

2,293,712.64

120,095.88 | 2,293,359.69

309* | 119,254.41*

1472 118,940.46

1473 | 118,898.42

1476 | 118,823.69

1484 | 119,064.68

1486 | 119,154.49

1489

1490

1491

1493

1494

1495

1496

1498

1499

1500

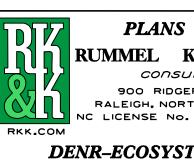
1501

1502

1505

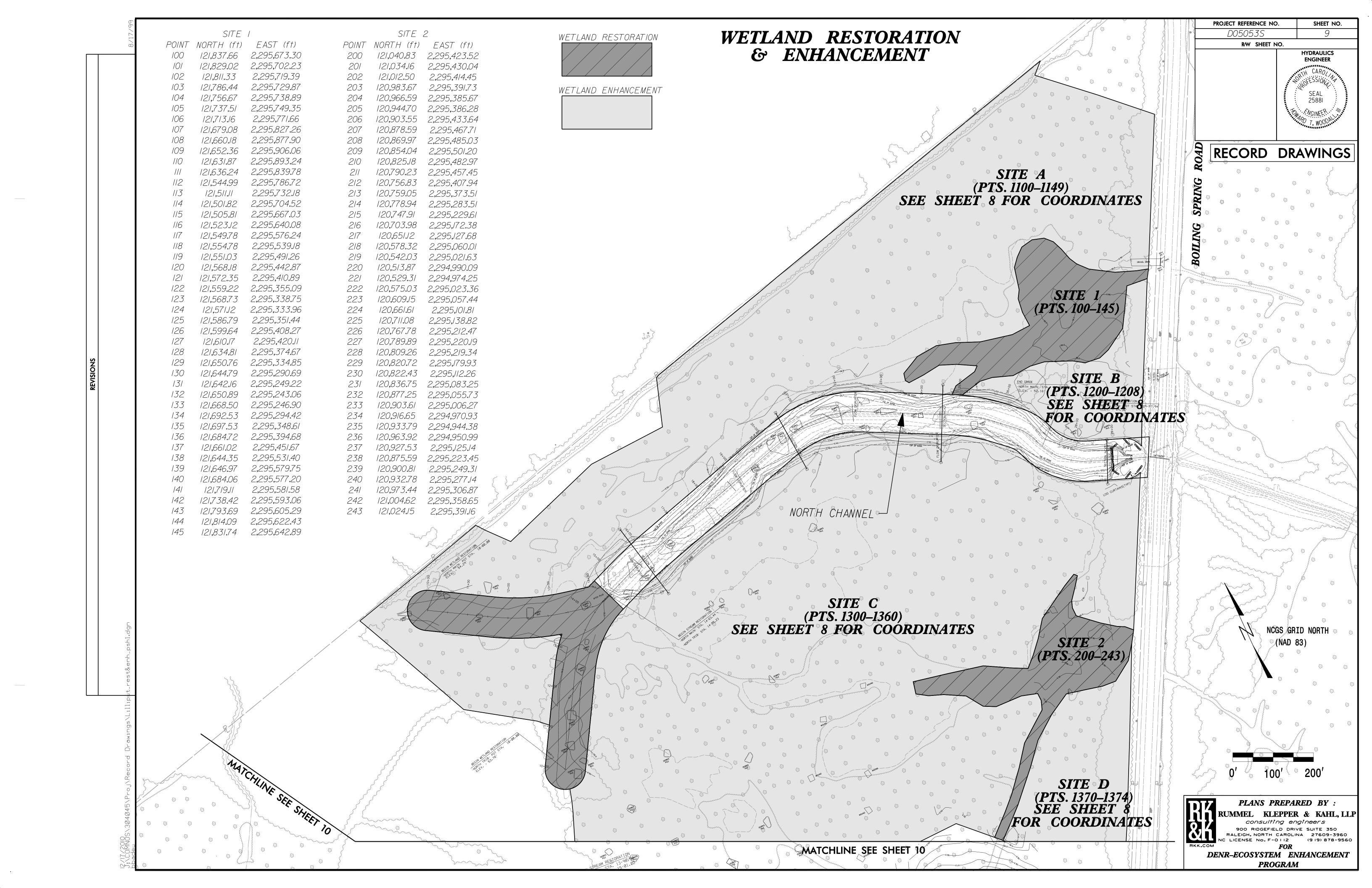
1506

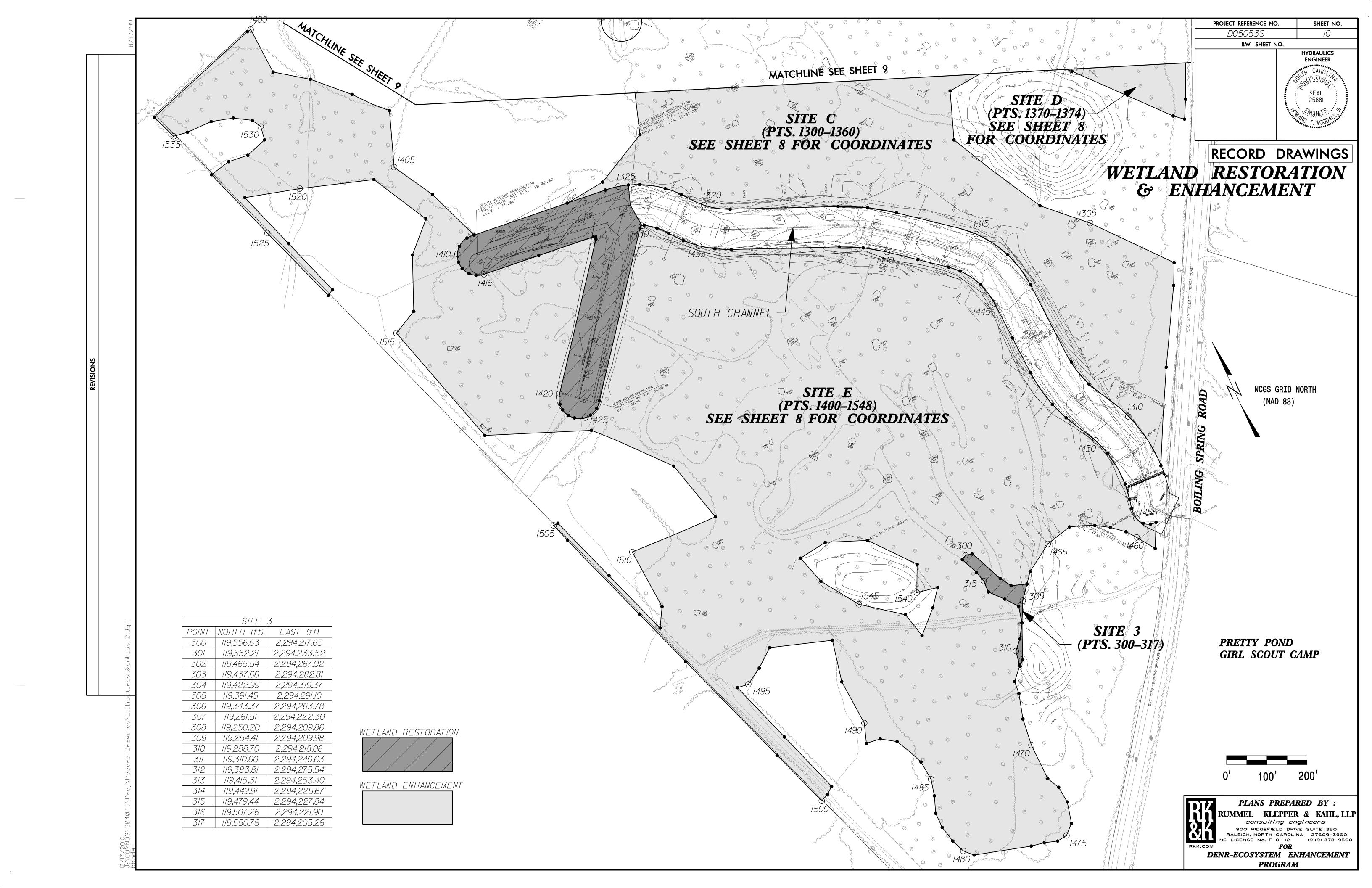
1507

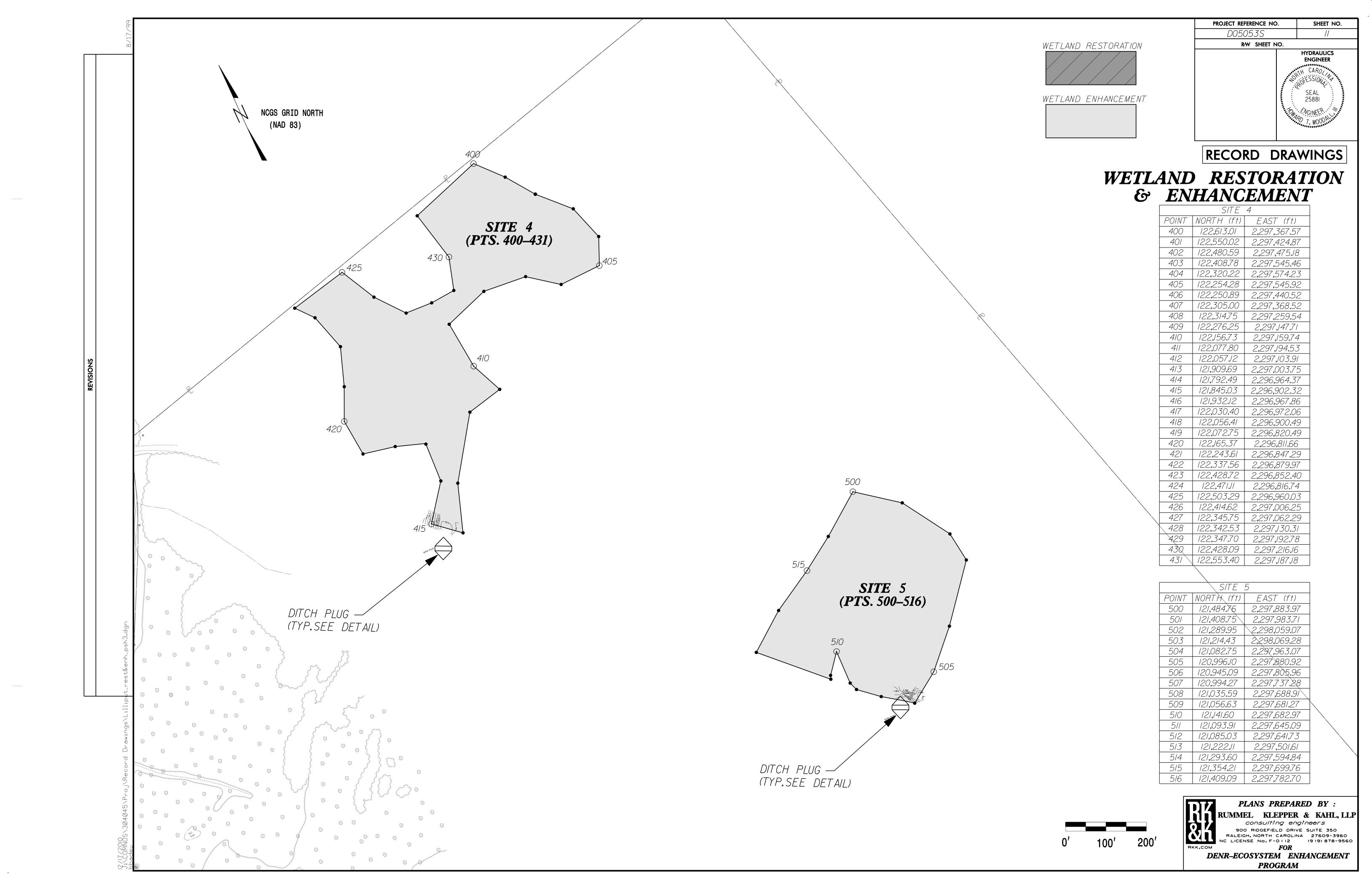

1508

1510

1509

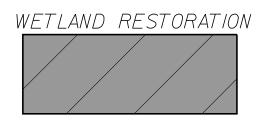

1511

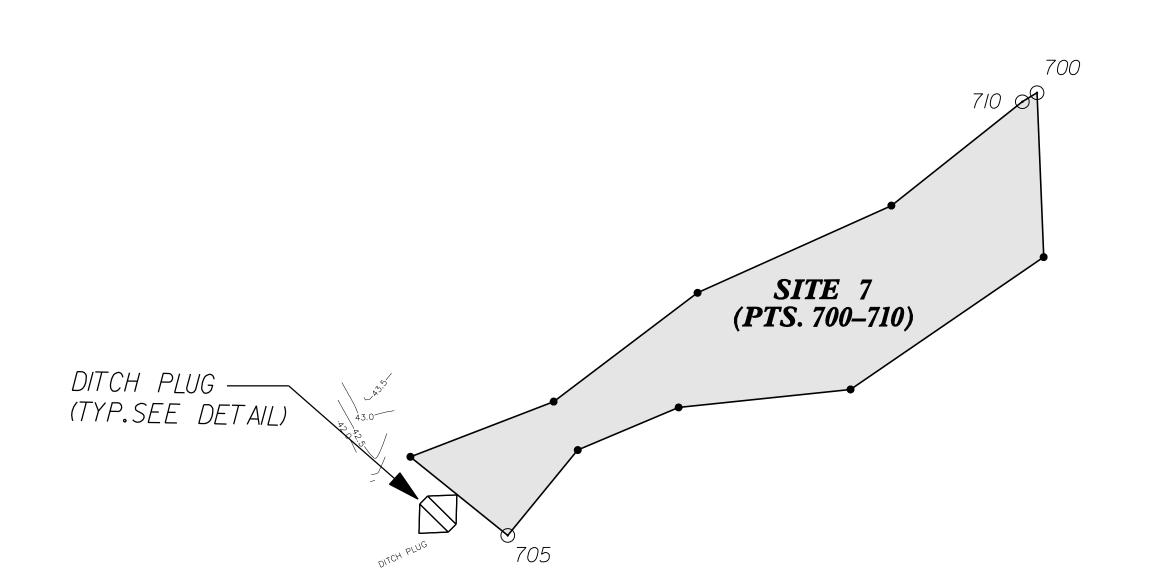

POINT | NORTH (ft) | EAST (ft)

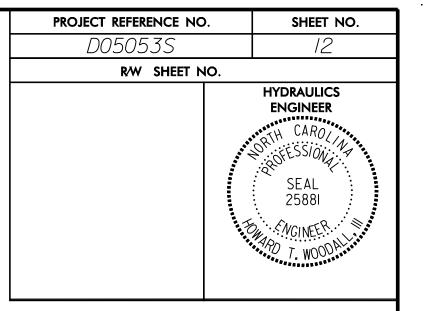


PLANS PREPARED BY : RUMMEL KLEPPER & KAHL, LLP consulting engineers 900 RIDGEFIELD DRIVE SUITE 350 RALEIGH, NORTH CAROLINA 27609-3960 NC LICENSE No. F-0 | 12 (9 19) 878-9560

DENR-ECOSYSTEM ENHANCEMENT **PROGRAM**

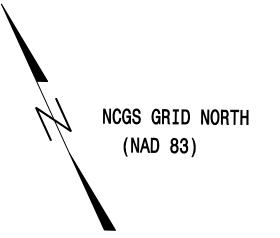


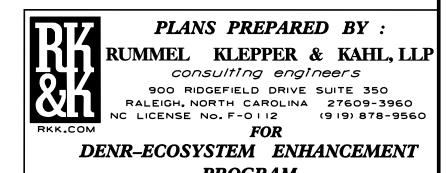



	SITE	5
POINT	NORTH (ft)	EAST (ft)
600	118,972.54	2,298,304.96
601	118,903.62	2,298,306.58
602	118,906.73	2,298,277.79
603	118,955.72	2,298,270.18

	SITE	7
POINT	NORTH (ft)	EAST (ft)
700	118,539.28	2,297,725.89
701	118,459.96	2,297,693.63
702	118,439.02	2,297,573.33
703	118,467.40	2,297,485.81
704	118,469.05	2,297,428.76
705	118,443.70	2,297,337.14
706	118,502.02	2,297,348.01
707	118,497.18	2,297,427.84
708	118,517.63	2,297,5/9.57
709	118,517.02	2,297,630.25
710	118,537.90	2,297,714.79

WETLAND ENHANCEMENT





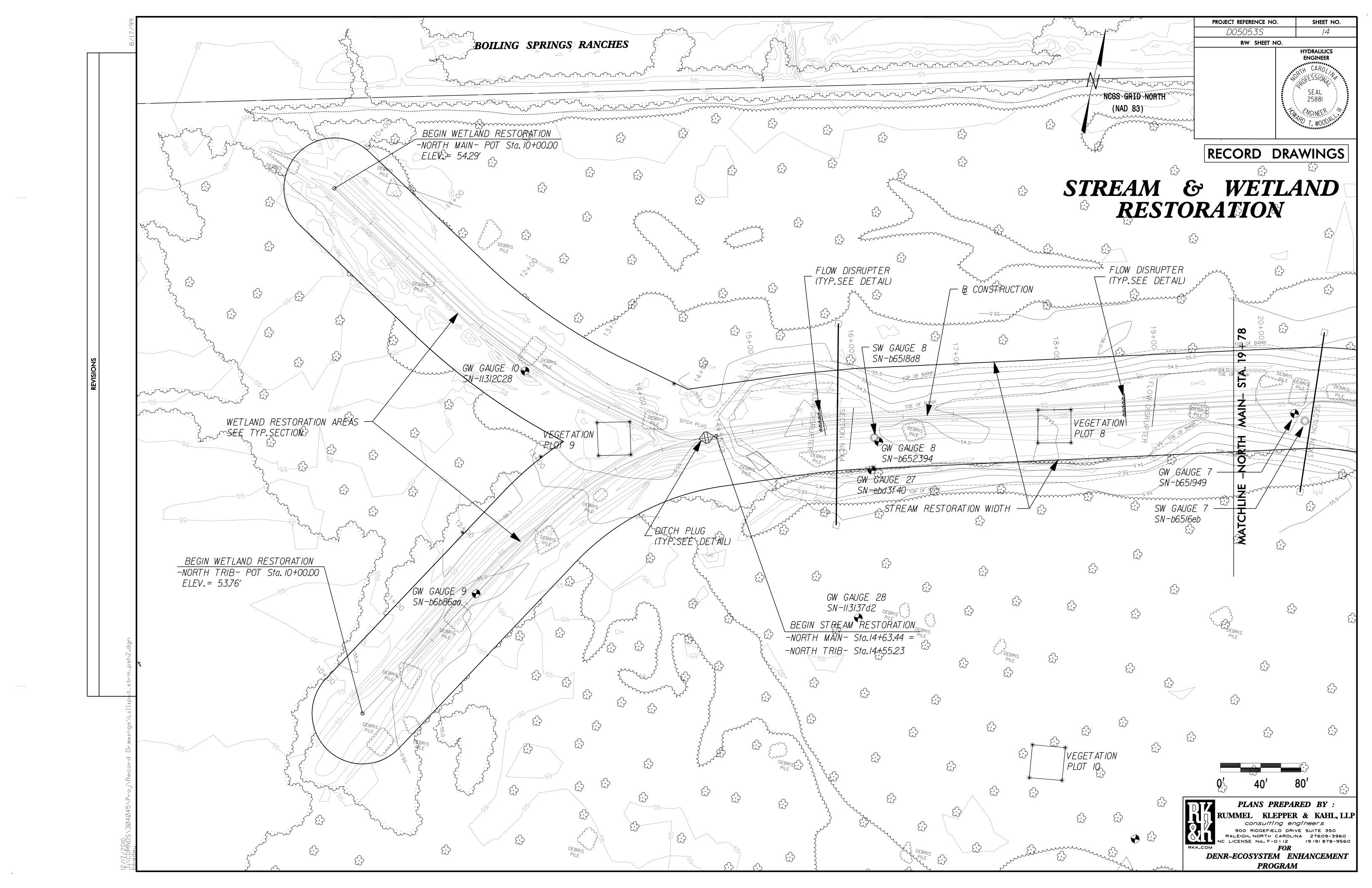
RECORD DRAWINGS

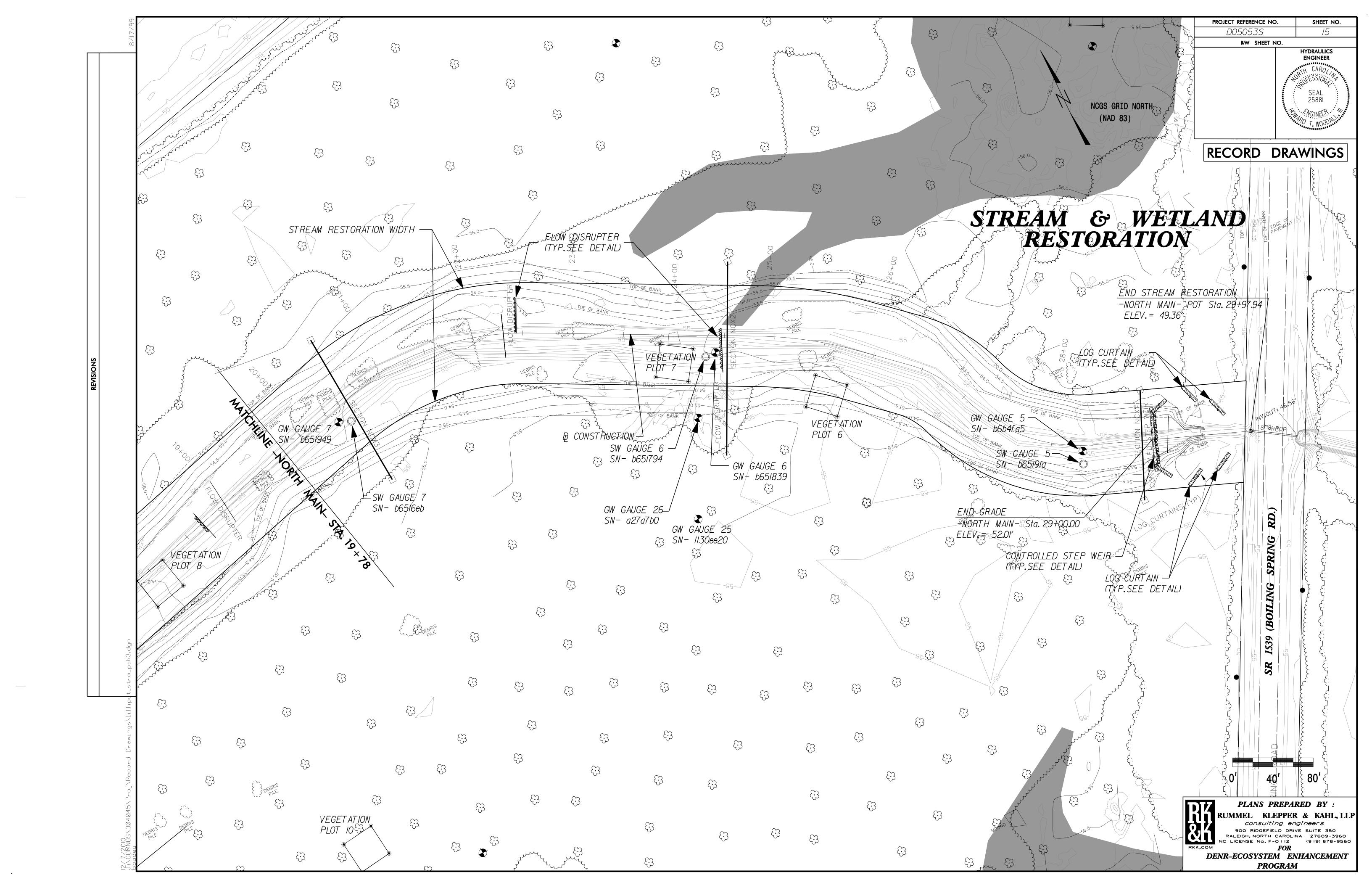
WETLAND RESTORATION & ENHANCEMENT

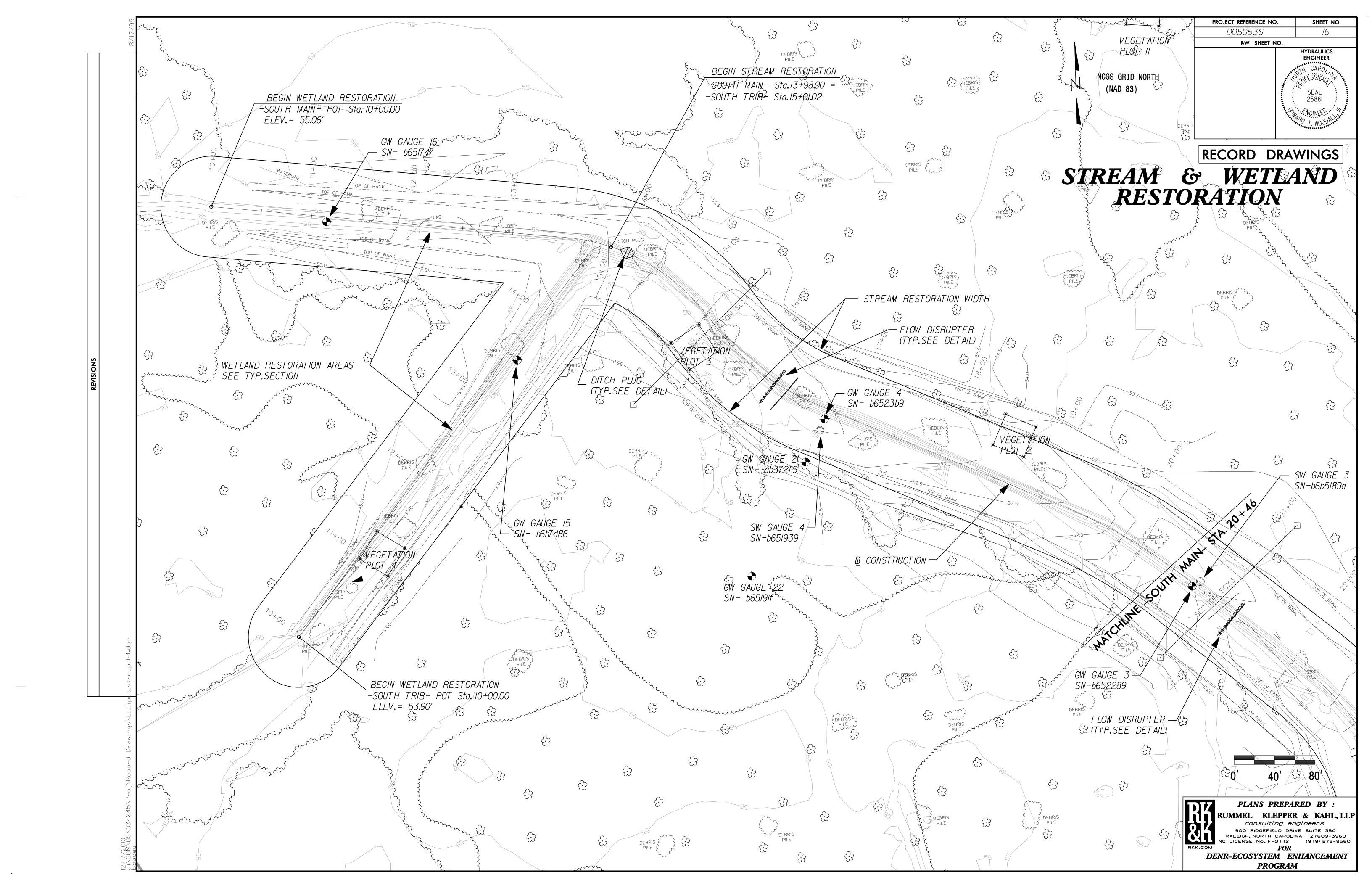
SITE 6 (PTS. 600, 603)

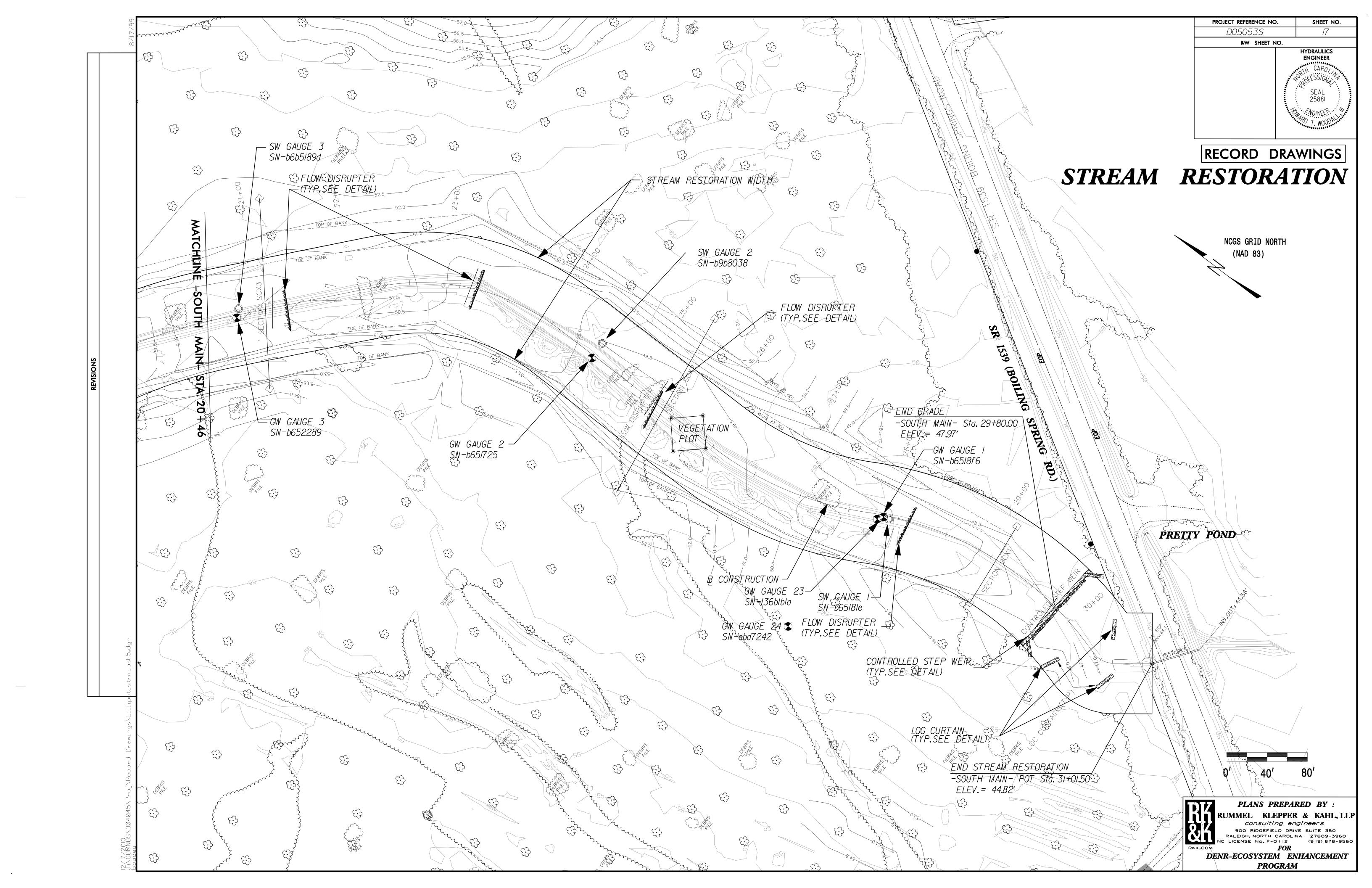
PROGRAM

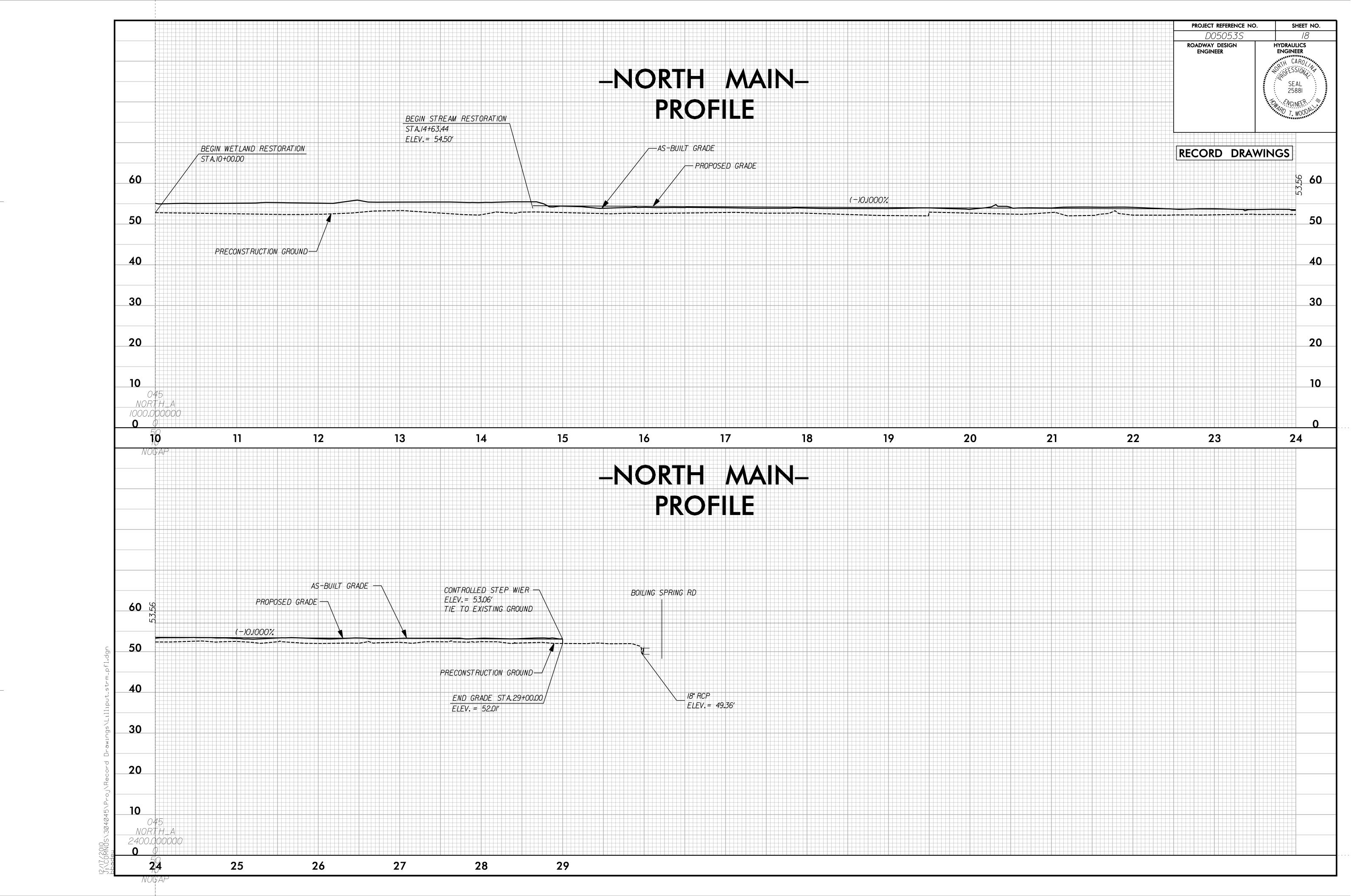
PROJECT REFERENCE N	O. SHEET NO.
D05053S	13
R /W SHEET	NO.
	HYDRAULICS ENGINEER
	.464111122.

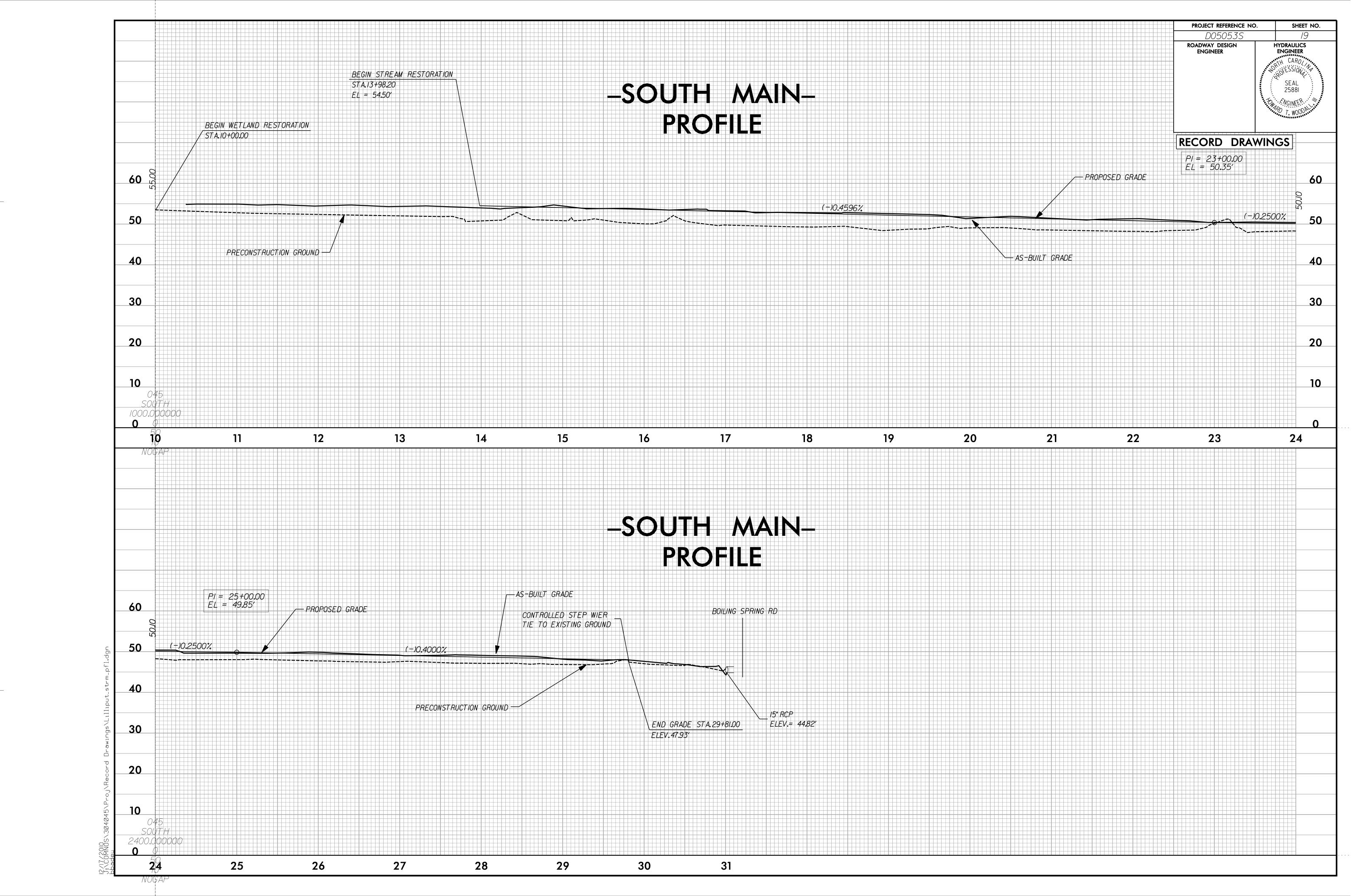

RECORD DRAWINGS

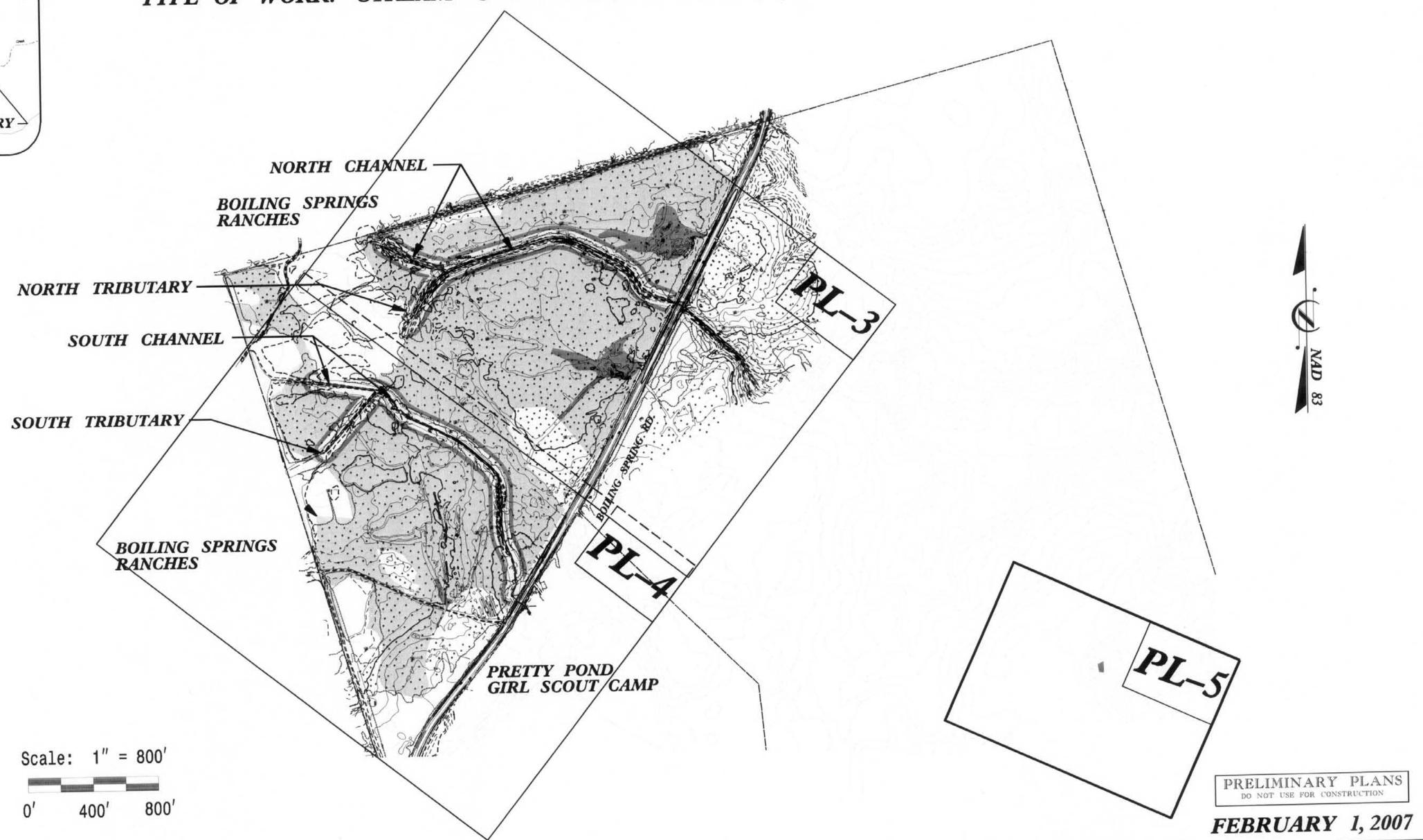

			С	OORDINATE	GEOMETRY - NO	ORTH MAIN			
10+00.00		POT	121,624.52	2,293,929.32					
	T1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , ,	S 59° 38' 45.25" E	158.56'	N/A	N/A	N/A
11+58.56		PC	121,544.39	2,294,066.14					
	C1	CC	122,053.51	2,294,364.29	S 68° 42' 39.11" E	185.91'	186.69'	18° 07' 47.73" left	590.00'
13+45.25		PT	121,476.89	2,294,239.37					
	T2		,		S 77° 46' 32.98" E	67.52'	N/A	N/A	N/A
14+12.77		PC	121,462.59	2,294,305.36					
	C2	CC	121,511.46	2,294,315.94	N 8° 24' 32.56" E	28.93'	29.35'	33° 37' 48.92" left	50.00'
14+42.11		PT	121,464.91	2,294,334.19					
	T3				N 68° 35' 38.10" E	106.16'	N/A	N/A	N/A
15+48.27		PC	121,503.65	2,294,433.03					
	C3	CC	120,945.04	2,294,652.01	N 71° 18' 2.43" E	56.67'	56.69'	05° 24' 48.65" right	600.00'
16+04.96		PT	121,521.82	2,294,486.70					
	T4				N 74° 00' 26.75" E	440.20'	N/A	N/A	N/A
20+45.16		PC	121,643.10	2,294,909.86					
	C4	CC	121,369.13	2,294,988.38	S 84° 44' 27.23" E	206.61'	211.42'	42° 30' 12.03" right	285.00'
22+56.58		PT	121,624.17	2,295,115.60					
	T5				S 63° 29' 21.21" E	224.44'	N/A	N/A	N/A
24+81.01		PC	121,523.98	2,295,316.44					
	C5	CC	121,166.04	2,295,137.89	S 56° 06' 45.34" E	102.71'	103.00'	14° 45' 11.74" right	400.00'
25+84.01		PT	121,466.72	2,295,401.70					
	T6				S 48° 44' 9.47" E	52.83'	N/A	N/A	N/A
26+36.84		PC	121,431.87	2,295,441.41					
	C6	CC	121,341.67	2,295,362.27	S 33° 42' 19.31" E	62.24'	62.96'	30° 03' 40.32" right	120.00'
26+99.80		CRC	121,380.10	2,295,475.95					
	C7	CC	121,431.33	2,295,627.53	S 43° 58' 25.23" E	136.75'	141.30'	50° 35' 52.16" left	160.00'
28+41.10		PT	121,281.68	2,295,570.90					
	T7				S 69° 16' 21.31" E	158.72'	N/A	N/A	N/A
29+99.81		PT	121,225.51	2,295,719.34					
			С	OORDINATE	GEOMETRY - NO	ORTH TRIB			
10+00.00			121,124.61	2,294,076.36					
	T10		,		N 30° 12' 26.25" E	254.24'	N/A	N/A	N/A
12+54.24	-	PC	121,344.33	2,294,204.28					
	C10	CC	121,193.39	2,294,463.54	N 49° 24' 2.17" E	197.25'	200.99'	38° 23' 11.86" right	300.00'
14+55.23		PT	121,472.69	2,294,354.05					


			COO	ORDINATE GI	EOMETRY - SOL	JTH MAII	N		
10+00.00			120,776.63	2,293,491.26			<u>-</u>		
10 00100	T20		1=0,110100	_,,	S 81° 17' 28.47" E	351.87'	N/A	N/A	N/A
13+51.87		PC	120,723.36	2,293,839.08					
	C20	СС	120,525.66	2,293,808.80	S 56° 32' 32.06" E	167.46'	172.78'	49° 29' 52.82" right	200.00'
15+24.65		CRC	120,631.03	2,293,978.79					
	C21	CC	120,757.48	2,294,182.78	S 47° 46' 59.20" E	132.22'	133.96'	31° 58' 47.11" left	240.00'
16+58.61		PT	120,542.19	2,294,076.71					
	T21				S 63° 46' 22.75" E	267.77'	N/A	N/A	N/A
19+26.38		PC	120,423.85	2,294,316.91					
	C22	CC	119,975.33	2,294,095.95	S 56° 10' 39.68" E	132.18'	132.56'	15° 11' 26.15" right	500.00'
20+58.94		PT	120,350.28	2,294,426.72					
	T22				S 48° 34' 56.61" E	157.75'	N/A	N/A	N/A
22+16.69		PC	120,245.93	2,294,545.02					
	C23	CC	120,077.20	2,294,396.17	S 24° 07' 18.71" E	186.33'	192.11'	48° 55' 15.79" right	225.00'
24+08.80		PT	120,075.87	2,294,621.17					
	T23				S 00° 20' 19.19" W	193.04'	N/A	N/A	N/A
26+01.84		PC	119,882.83	2,294,620.02					
	C24	CC	119,880.91	2,294,945.02	S 14° 18' 17.45" E	164.32'	166.13'	29° 17' 13.28" left	325.00'
27+67.96		CRC	119,723.61	2,294,660.63					
	C25	CC	119,563.88	2,294,371.86	S 06° 29' 44.47" E	252.07'	258.64'	44° 54' 19.23" right	330.00'
30+26.60		PT	119,473.16	2,294,689.14					
	T24				S 15° 57' 25.15" W	13.97'	N/A	N/A	N/A
30+40.57		PC	119,459.72	2,294,685.30					
	C26	CC	119,452.85	2,294,709.34	S 10° 29' 51.30" E	22.27'	23.09'	52° 54' 32.90" left	25.00'
30+63.65		PT	119,437.82	2,294,689.36					
	T25				S 36° 57' 7.75" E	37.84'	N/A	N/A	N/A
31+01.50		PT	119,407.58	2,294,712.11					
			COC	ORDINATE GI	EOMETRY - SOL	JTH MAII	N		
10+00.00			120,345.43	2,293,550.02					
	T30				N 40° 52' 45.07" E	476.13'	N/A	N/A	N/A
14+76.13		PC	120,705.43	2,293,861.63					
	C30	CC	120,692.34	2,293,876.75	N 76° 31' 46.24" E	23.31'	24.89'	71° 18' 2.35" right	20.00'
15+01.02		PT	120,710.86	2,293,884.30					


PLANS PREPARED BY :


PROGRAM





ECOSYSTEM ENHANCEMENT PROGRAM

D05053S \mathbb{PL}^{-1}

PLANTING PLAN

LOCATION: SR 1539 (BOILING SPRING RD.) TYPE OF WORK: STREAM & WETLAND RESTORATION

INDEX OF SHEETS

SHEET NO.

DESCRIPTION

PL-l

TITLE

SPECIFICATIONS PL-1A

PL-2PL-3 THRU PL-5 **DETAILS** PLANTING PLANS

PLANS PREPARED BY:

RUMMEL • KLEPPER & KAHL, LLP

consulting engineers 900 RIDGEFIELD DRIVE SUITE 350 RALEIGH, NORTH CAROLINA 27609-3960

FOR

ECOSYSTEM ENHANCEMENT PROGRAM

KRISTIN MIGUEZ EEP PROJECT MANAGER

WYATT BROWN EEP REVIEW COORDINATOR

DESIGN ENGINEER CAROLINA

WILLIAM E. STAFFORD

PROJECT SCIENTIST

PRELIMINARY PLANS
DO NOT USE FOR CONSTRUCTION

HOWARD T. WOODALL III, P.E. PROJECT DESIGN ENGINEER

PRELIMINARY PLANS
DO NOT USE FOR CONSTRUCTION

PROJECT REFERENCE NO. SHEET NO. D05053S PL-2

RW SHEET NO. HYDRAULICS ENGINEER

POINT	NORTH (ft)	EAST (ft)
100	121,837.66	2,295,673.30
101	121,829.02	2,295,702.23
102	121,811.33	2,295,719.39
103	121,786.44	2,295,729.87
104	121,756.67	2,295,738.89
105	121,737.51	2,295,749.35
106	121,713.16	2,295,771.66
107	121,679.08	2,295,827.26
108	121,660.18	2,295,877.90
109	121,652,36	2,295,906.06
110	View view envisioner	
111	121,631.87	2,295,893.24
AT IN	121,636.24	2,295,839.78
112	121,544.99	2,295,786.72
113	121,511,11	2,295,732.18
114	121,501.82	2,295,704.52
1/5	121,505,81	2,295,667.03
//6	121,523.12	2,295,640.08
117	121,549.78	2,295,576.24
118	121,554,78	2,295,539./8
119	121,551.03	2,295,491.26
120	121,568.18	2,295,442.87
121	121,572.35	2,295,410.89
122	121,559.22	2,295,355.09
123	121,567.82	2,295,391,27
124	121,579.18	2,295,372.29
125	121,587.88	2,295,356.25
126	121,599.64	2,295,408.27
127	121,610.17	2,295,420.11
128	121,634.81	2,295,374.67
129	121,650.76	2,295,334.85
130	121.644.79	2,295,290.69
131	121,642.16	2,295,249.22
132	121,650.89	2,295,243.06
133	121,668.50	2,295,246.90
134	121,692.53	2,295,294.42
135	121,697.53	2,295,348.61
136	121,684.72	2,295,394.68
137	121,661.02	2,295,451.67
138	121,644.35	2,295,531.40
139		
140	121,646.97	2,295,579.75
141	121,684.06	2,295,577,20
142	121,719.11	2,295,581.58
VII.6.	121,738.42	2,295,593.06
143	121,793.69	2,295,605,29
144	121,814.09	2,295,622.43
145	121,831.74	2,295,642.89

POINT	NORTH (ft)	EAST (ft)
200	121,040.83	2,295,423.52
201	121,034.16	2,295,430.04
202	121,012.50	2,295,414.45
203	120,983.67	2,295,391,73
204	120.966.59	2,295,385,67
205	120,944.70	2,295,386.28
206	120,903.55	2,295,433.64
207	120,878.59	2,295,467.71
208	120,869.97	2,295,485.03
209	120,854.04	2,295,501.20
210	120,825.18	2,295,482.97
211	120,790.23	2,295,457.45
212	120,756.83	2,295,407.94
213	120,759.05	2,295,373,51
214	120,778.94	2,295,283.51
215	120,747.91	2,295,229.61
216	120,703.98	2,295,172.38
217	120,651.12	2,295,127.68
218	120,578.32	2,295,060.01
219	120,542.03	2,295,021.63
220	120,513.87	2,294,990.09
221	120,529.31	2,294,974.25
222	120,575.03	2,295,023.36
223	120,609,15	2,295,057.44
224	120,661.61	2,295,101.81
225	120,711.08	2,295,138.82
226	120,767,78	2,295,212.47
227	120,789.89	2,295,220,19
228	120,809.26	2,295,219.34
229	120,820.72	2,295,179.93
231	120,822.43	2,295,112.26
232	120,836.75	2,295,083,25
233	120,903.61	2,295,055.73 2,295,006.27
234	120,916.65	2,294,970.93
235	120,933.79	2,294,944.38
236	120,963.92	2,294,950.99
237	120,927.53	2,295,125,14
238	120,875.59	
239	120,900.81	2,295,223.45
240	120,932.78	2,295,277.14
241	120,973.44	2,295,306.87
242	121,004.62	2,295,358.65
243	121,024.15	2,295,391,16

POINT	NORTH (ft)	EAST (ft)
300	121,257.95	2,294,067.20
301	121,262.25	2,294,062.57
302	121,363.89	2,293,908.87
303	121,670.46	2,293,765.92
304	121,722.23	2,293,963.98
305	121,766.53	2,294,125.62
306	121,745.40	2,294,142,25
307	121,694.06	2,294,187.77
308	121,739.68	2,294,318.51
309	121,785.30	2,294,449.24
310	121,796.08	2,294,647.56
311	121,913.58	2,294,684.91
312	122,063.87	2,295,239.56
3/3	122,160.67	2,295,603.55
314	122,232.74	2,295,876.48
3/5	122,205.66	2,295,849.16
3/6	122,096.86	2,295,970.10
317	121,994.68	2,296,078.76
318	121,289.53	2,295,721.89
POINT	NORTH (ft)	EAST (ft)
400	121,202,30	2,295,678.77
401	120,599.98	2,294,901.74

POINT	NORTH (ft)	EAST (ft)
400	121,202.30	2,295,678.77
401	120,599.98	2,294,901.74
402	120,593.63	2,294,717.66
403	120,481.55	2,294,669.85
404	120,238.16	2,294,782.88
405	120,142,49	2,294,873.07
406	119,959.16	2,295,011.98
407	119,909.62	2,294,984.71
408	119,738.66	2,294,874.37
409	119,575.69	2,294,776.68
410	120,796.39	2,293,857.11
411	120,854.32	2,293,986.36
412	121,032.53	2,294,053.93
4/3	121,051.43	2,294,059.95

POINT	NORTH (ft)	EAST (ft)
500	120,410.64	2,295,280.11
501	120,304.33	2,295,224.64
502	120,262.25	2,295,199.73
503	120,282.07	2,295,178.47
504	120,496.68	2,295,007.73

POINT	NORTH (ft)	EAST (ft)
600	119,556.63	2,294,217.65
601	119,552.21	2,294,233.52
602	119,465.54	2,294,267.02
603	119,437.66	2,294,282.81
604	119,422.99	2,294,319.37
605	119,391.45	2,294,291.10
606	119,343.37	2,294,263.78
607	119,261.51	2,294,222.30
608	119,250.20	2,294,209.86
609	119,254.41	2,294,209.98
610	119,288.70	2,294,218.06
6//	119,310.60	2,294,240.63
612	119,383.81	2,294,275.54
613	119,415.31	2,294,253.40
614	119,449.91	2,294,225.67
6/5	119,479.44	2,294,227.84
616	119,507.26	2,294,221.90
617	119,550.76	2,294,205.26

POINT	NORTH (ft)	EAST (ft)
700	119,702.14	2,294,019.72
701	119,592.92	2,294,101.14
702	119,530.92	2,294,067.72
703	119,518.19	2,294,119.36
704	119,479.23	2,294,085.61
705	119,430.66	2,294,029.85
706	119,495.32	2,294,017.43
707	119,572.14	2,293,926.92
708	119,666.01	2,293,870.12
709	119,740.21	2,293,852.07
710	119,746.54	2,293,924.44

	SITE	E	SITE E		
POINT	NORTH (ft)	EAST (ft)	POINT	NORTH (ft)	EAST (ft)
800	121.532.67	2,293,252,90	863	120,261,21	2,293,540.00
801	121,413.82	2.293.253.14	864	120.372.74	2,293,299.96
802	121.354.85	2,293,326,85	865	120,698,79	2.293.223.65
803	121,273,76	2.293.400.57	866	120,726.91	2,293,286.88
804	121,195,19	2,293,464,24	867	120,851,94	2,293,348.64
805	121.065.70	2,293,409,44	868	120,915,51	2,293,419,63
806	120,851.32	2,293,462,31	869	121,061.92	2,293,350.72
807	119,386.12	2,293,498,17	870	121,127.21	2,293,177.68
808	120,961.06	2,294,660.10	871	121,170.56	2,293,046.74
809	119,353.43	2,294,641.63	872	121,019.00	2,293,090.05
810	119,399.10	2,294,614.05	873	120,867.43	2,293,133.36
811	119,423.94	2,294,596.85	874	120,860.05	2,293,117.51
812	119,451.45	2,294,567.38	875	121,066.74	2,293,055.43
813	119.473.62	2,294,535.70	876	121,259.11	2,292,999,85
814	119.499.55	2,294,478.29	877	121,268.05	2,293,052.36
8/5	119,487.00	2,294,411.49	878	121,260.20	2,293,102.12
816	119,446.87	2,294,340.78	879	121,274.77	2,293,156.46
817	119,223.29	2,294,/80.26	880	121,308.38	2,293,163.33
818	119,191.82	2,294,175.67	881	121,331.75	2,293,151.78
819	119,131.56	2,294,155.42	882	121,358.39	2,293,112.87
820	119,064.68	2,294,143.95	883	121,376.12	2,293,060.47
821	118,971.74	2,294,141.27	884	121,379.99	2,292,995.89
822	118,940.46	2,294,155.42	885	121,387.11	2,292,960.88
823	118,898.42	2,294,157.33	886	121,451,52	2,292,940,29
824	118,846.83	2,294,142.04	887	121,532.99	2,293,243.10
825	118,825.81	2,294,117.20			
826	118,823.69	2,294,091.28			
827	118,835.36	2,294,059.87			
828	118,843.01	2,294,027.38			
829	118,888.87	2,293,891.70			
830	118,910.65	2,293,872.74			
831	118,944.29	2,293,861.13			
832	118,986.33	2,293,853.48			
833	119,024.55	2,293,855.40			
834	119,064.68	2,293,872.59			
835	119,104.80	2,293,884.47			
836	119,154.49	2,293,882,15			
837	119,226.75	2,293,853.//			
838	119,251.95	2,293,819.09			
839	119,258.10	2,293,783.73			
840	119,304.96	2,293,802.47			
841	119,421.50	2,293,800.50			
842	119,523.49	2,293,827.68			
843	119,579.31	2,293,681.49			
844	119,546.48	2,293,634,99			
845	119,523.39	2,293,592.45			
846	119,528.53	2,293,564.66			
017	110 300 10	0 00 7 611 00			

847

848

854

859

861

119,366.19

119,190.80 119,183.24

119,334.74

119,644.61

119,802.69

20,048.08 20,096.15

20,095.88

19,922.04

119,748.19

119,793.20

119,947.25

19.928.85

2,293,611.28 2,293,657.90

2,293,639.46

2,293,619.44

2,293,574.00 2,293,481.14

2,293,433.80

2,293,361.15

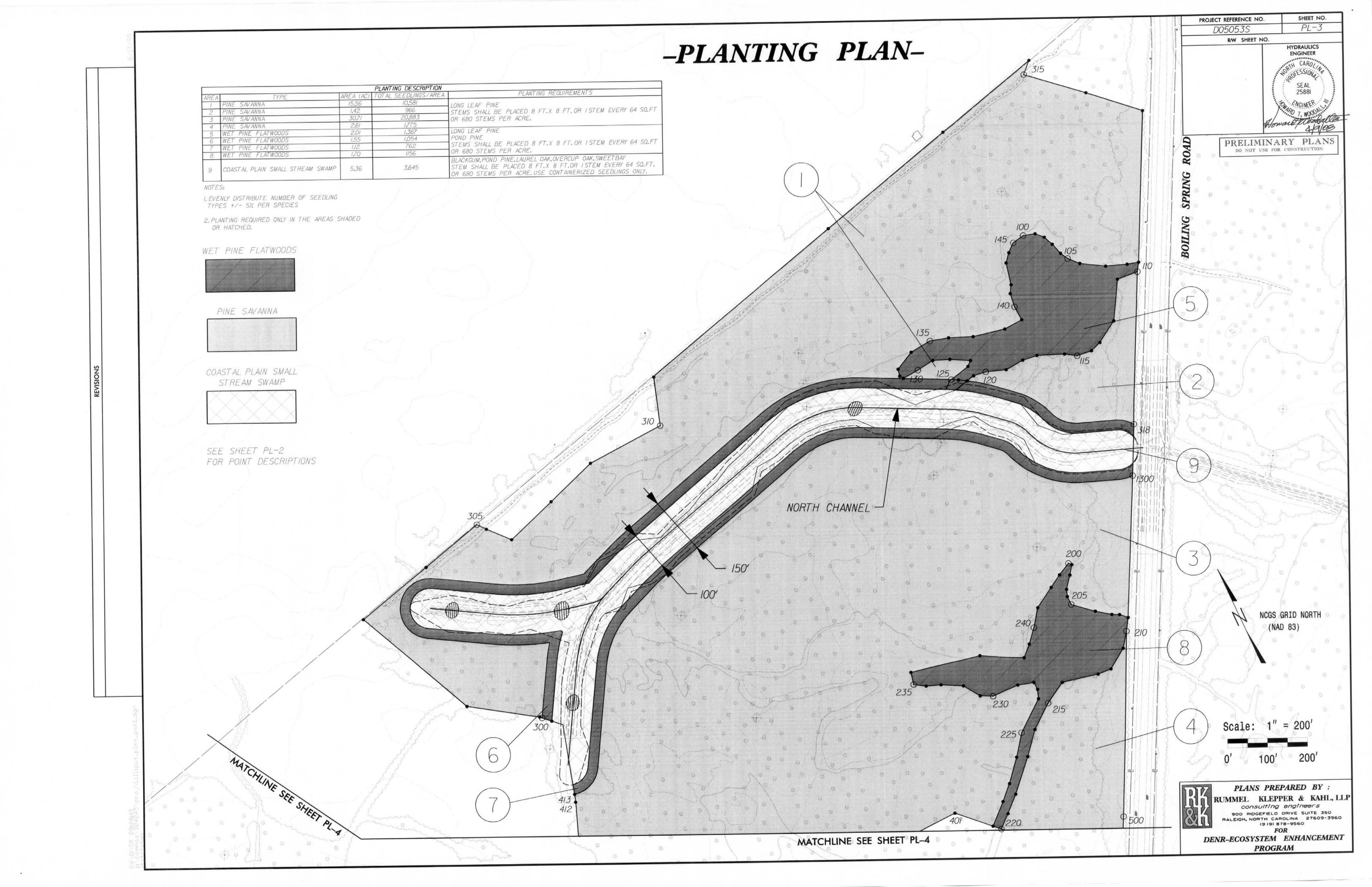
2,293,347.65

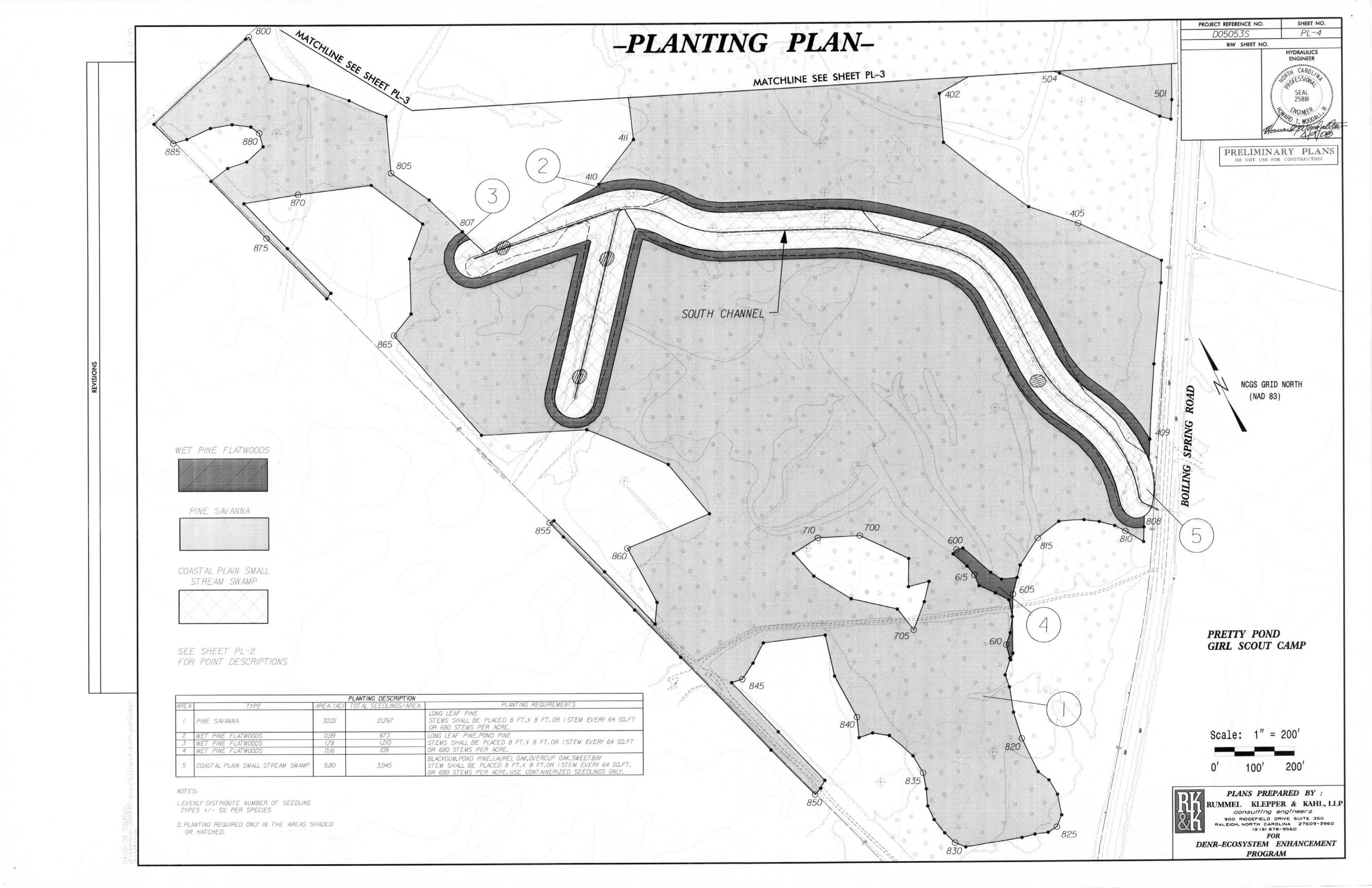
2,293,359.69 2,293,411,55

2,293,463.40

2,293,492.30

2,293,489.66

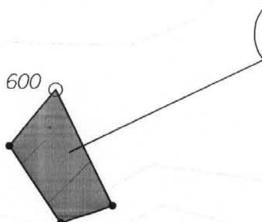

2,293,712.64


2,293,679.70

PLANS PREPARED BY: RUMMEL KLEPPER & KAHL, LLP consulting engineers

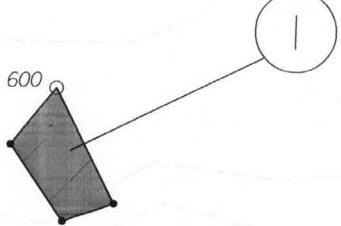
900 RIDGEFIELD DRIVE SUITE 350 RALEIGH, NORTH CAROLINA 27609-3960 (919) 878-9560

DENR-ECOSYSTEM ENHANCEMENT **PROGRAM**



-PLANTING PLAN-

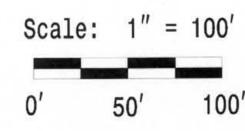
D05053S PL-5RW SHEET NO.


PRELIMINARY PLANS
DO NOT USE FOR CONSTRUCTION

NCGS GRID NORTH

POINT	NORTH (ft)	EAST (ft)
600	118,972.54	2,298,304.96
60/	118,903.62	2,298,306.58
602	118,906.73	2,298,277.79
603	118,955.72	2,298,270.18

WETLAND RESTORATION



POWER	EASEMENT

	PLANTING DESCRIPTION				
AREA	TYPE	AREA (AC)	TOTAL SEEDLINGS/AREA	PLANTING REQUIREMENTS	
1	CYPRESS GUM SWAMP	.044		BLACKGUM.BALD CYPRESS STEMS SHALL BE PLACED 8 FT.X 8 FT.OR ISTEM EVERY 64 SQ.FT OR 680 STEMS PER ACRE.USE CONTAINERIZED SEEDLINGS ONLY.	

I. EVENLY DISTRIBUTE NUMBER OF SEEDLING TYPES +/- 5% PER SPECIES

2. PLANTING REQUIRED ONLY IN THE AREAS SHADED OR HATCHED.

PLANS PREPARED BY:

RUMMEL KLEPPER & KAHL, LLP

consulting engineers

900 RIDGEFIELD DRIVE SUITE 350

RALEIGH. NORTH CAROLINA 27609-3960

(9 19) 878-9560

FOR

DENR-ECOSYSTEM ENHANCEMENT

PROGRAM